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Summary. In this work a parallel implementation of  the COLUMBUS 
MRSDCI program system is presented. A coarse grain parallelization approach 
using message passing via the portable toolkit T C G M S G  is used. The program 
is very well portable and runs on shared memory machines like the Cray Y-MP, 
Alliant FX/2800 or Convex C2 and on distributed memory machines like the 
iPSC/860. Further implementations on a network of workstations and on the 
Intel Touchstone Delta are in progress. Overall, results are quite satisfactory 
considering the complexity and the prodigious requirements, especially the I/O 
bandwidth, of MRCI programs in general. For  our largest test case we obtain a 
speedup of  a factor of 7.2 on an eight processor Cray Y-MP for that section of 
the program (hamiltonian matrix times trial vector product) which has been 
parallelized. The speedup for one complete diagonalization iteration amounts to 
5.9. An absolute speed close to 1 GFLOPS is found. Results for the iPSC/860 
show that ordinary disk I/O is certainly not sufficient in order to guarantee a 
satisfactory performance. As a solution for that problem, the implementation of 
a fully asynchronous distributed-memory model for certain data files is in 
preparation. 

Key words: Parallel c o m p u t i n g -  Multireference C I -  COLUMBUS program 
system 

1 Introduction 

Parallel computers promise to change the nature of  computation in at least two 
ways. The most dramatic change is that the peak speed of the biggest parallel 
supercomputers will reach Tera-FLOPS (1012 floating point operations per 
second) performance in the middle of this decade. This speed corresponds to an 
improvement of  four orders of magnitude within two decades taking the Cray 1 S 
of the mid-seventies with 160 MFLOPS peak performance as reference. On the 
contrary, single processor supercomputer performance will probably not manage 
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a factor of 50 improvement during that same period. Single processor work- 
station performance-  taking the VAXll/780 as s t anda rd -  is projected to 
improve by over two orders of magnitude over the same time scale. These 
TFLOPS machines will only be as expensive as current supercomputers, and will 
contain many hundreds or thousands of processors. What the programming 
model will be is still not clear, but what is clear at present is that there will be 
a two order of magnitude (or more) performance difference between the most 
powerful parallel and sequential computers. 

However, the most widespread impact of parallel computers will probably 
come in the form of cost-effective few (8-64) processor machines affordable by 
many small research groups. Such machines might offer increased throughput to 
a mix of applications, or provide a single modestly parallel resource for a single 
large application. In contrast to traditional vector supercomputers, these new 
parallel machines offer much increased scalar performance as well and, indeed, 
many "non-vectorizable" algorithms are straightforwardly parallelized. 

These thoughts are not idle speculation as in many ways that are true already 
now, albeit on a reduced scale. The fastest supercomputer today is the Intel 
Touchstone Delta prototype, a parallel computer consisting of a mesh of 528 
Intel i860 microprocessors. It has a peak speed of 30 GFLOPS and has been 
benchmarked at 13.5 GFLOPS (on both the massively parallel LINPACK and 
the computational kernel of a four-index transformation). Intel and other 
computer companies, like Cray, are most likely to follow with even more 
powerful machines. At the moment, and possibly more significant is that many 
groups are beginning to realize that they already own a very powerful parallel 
computer in the form of their workstation LAN that is offen comparable to a 
present-day supercomputer in capacity. However, the hext realization invariably 
is that they do not have the software to exploit these resources. 

To perform "new science" on these machines we need first to invest the effort 
required to port our software to this new environment and to develop new 
methods and algorithms to exploit these new machines. Vector-supercomputers 
proved themselves well worth such an investment (Refs. [1-5] represent a small 
collection from among numerous other examples) when coupled with theoretical 
and algorithmic advances. 

Only recently parallel hard- and software have reached a state of reliability 
and technological standard which makes it worthwhile to attempt the paralleliza- 
tion of such large and complicated programs as ab initio electronic structure 
programs. Parallelization of SCF, CI and Coupled Cluster programs is a field of 
very active research efforts in many groups (see e.g. [6-10]). However, to our 
knowledge, so rar no successful parallelization of a general MRSDCI program 
has been reported. 

In this paper, we examine in some detail a few-processor parallel implemen- 
tation of the multireference single- and double-excitation configuration interac- 
tion (MRSDCI) program of the COLUMBUS program system [ 1-3]. Based on 
our present experience some thought is also given to a massively parallel version 
of the program. 

1.1 The sequential C O L U M B U S  program 

This section is intended to be only a brief characterization of the standard, 
sequential COLUMBUS Program System. For more information see Refs. 
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[ 1 3]. Only those steps which are relevant to our present work of paraUelization 
will be discussed in detail. 

The COLUMBUS Program System is a collection of Fortran programs for 
performing general ab initio electronic structure calculations within the frame- 
work of MRSDCI. It is based on the Graphical Unitary Group Approach 
(GUGA) [11, 12] and contains the following program sections: 

Atomic orbital (AO)-integral generation, Self-Consistent-Field (SCF), Multi- 
configuration SCF (MCSCF), Integral transformation, iterative Davidson diago- 
nalization of a MRSDCI wave function, one- and two-particle density matrices, 
one-electron expectation and some response properties, MCSCF- and MRSDCI 
analytical gradients. 

The COLUMBUS program runs on a large variety of computers including 
numerous Unix-based workstations, VAX/VMS minicomputers, IBM main- 
frames and compatibles, minisupercomputers (including the Alliant FX/8 and 
FX/2800, Convex C1 and C2, and FPS 500EA), and Cray supercomputers 
(X-MP, Y-MP, and Cray-2). The individual codes are written and maintained in 
such a way that porting of the codes to new machines is relatively straight- 
forward. The entire sequential program system (without the gradient part at the 
time of this writing), including source code, installation scripts, documentation, 
and sample calculations is available using anonymous FTP from the server 
ftp.tcg.anl.gov. 

The entire electronic structure calculation is performed in a series of steps. 
The first steps consist of optimization of molecular orbitals (MOs) using the SCF 
or MCSCF method depending on the case and the complexity of the problem. 
These MOs are used to define the configuration state functions (CSFs) for the 
final large-scale CI wave function. This latter wave function is generated from a 
set of reference CSFs which determine the internal orbital space by allowing 
single and double excitations into the space of virtual (or external) orbitals. In 
the approach chosen in the COLUMBUS system always all excitations into the 
given external space are taken into account thereby allowing the formulation of 
the Davidson diagonalization (see below) to be broken down into individual 
dense matrix- and vector-type operations of the dimension of the orbital basis. 
The structure and numbering scheme of the CSFs is established in the GUGA 
approach by a distinct row table (DRT) which is constructed in program 
CIDRT. Next, the internal coupling coefficients for the subsequent diagonaliza- 
tion step are calculated in program CIUFT and stored in a file called the formula 
tape. After transforming the AO integrals into the MO basis and sorting them in 
an appropriate way the iterative diagonalization of the matrix representation of 
the hamiltonian operator is done in program CIUDG. For accurate, large-scale, 
wave function expansions, this is the computationally most demanding step. 
MRSDCI expansions of 1-10 million are now becoming routine with the 
COLUMBUS program system. 

Program CIUDG uses the iterative Davidson diagonalization method [ 13] to 
determine the appropriate eigenvectors and eigenvalues of the hamiltonian 
matrix. Most of the effort in large-scale calculations within each of these 
iterations is the computation of a matrix-vector product of the hamiltonian 
matrix and a trial vector. These vectors will be called v (trial vector) and w 
(resulting product vector) in the subsequent sections. The subroutine governing 
the computation of the product is called MULT. The inherent sparseness of the 
hamiltonian matrix may be exploited by using the "direct-CI" procedure [14] to 
compute this matrix-vector product. This involves computing the matrix-vector 



492 M. Schüler et al. 

product "directly" from the electron repulsi0n integrals, without explicitly 
constructing or storing the hamiltonian matrix elements. The advantage of this 
procedure may be appreciated by noting that for a MRSDCI wave function 

Nor b hamiltonian matrix expansion with orbital basis of size Norb, there are roughly 8 
elements total, only 6 ~Norb of which are non-zero, and these non-zero elements 
are constructed from only 4 Not b individual electron repulsion integrals. Since the 

6 4 computational effort scales as Nor b while the underlying data scales only as Norb, 
the direct MRSDCI method possesses a quite favorable "surface-to-volume" ratio 
when comparing the amount of input and output data to the numerical work. 

Because of the structure of the MRSDCI wave function as defined above, the 
overall matrix-vector product involving a very large hamiltonian matrix may be 
cast into a form [5, 15-17] where most of the operations are of dense matrix- 
matrix and matrix-vector type where the dimensions of these matrices and vectors 
are of the length of Norb. In the COLUMBUS program these matrix and vector 
operations are performed via dense-matrix product kernels (e.g. BLAS(3) routines 
[18]) which have proved so efficient on vector and scalar-pipelined machines 
during the past decade. In the coarse-grain parallelization of the COLUMBUS 
program described in this paper these efficient kernels are still exploited. It is 
anticipated that this feature will remain quite beneficial also on most of the 
forseeable parallel computers since the individual nodes can take advantage of 
these same computational kernels. 

During the iterative Davidson procedure the v and w vectors are broken 
into segments. Subroutine MULT loops over pairs of segments of v and w. 
Thus, only segment pairs need to be kept in central memory, allowing to run 
calculations with sizes of CI expansions much larger than physical memory. 
Originally, this feature had been implemented into the sequential code for 
compatibility reasons in order to make larger CI calculations also possible on 
machines with rather small central memory. However, as will be demonstrated 
later, this facility of the program proved to be extremely useful for the purpose 
of parallelization. 

1.20bjectives 

Our objectives separate into short- and long-term goals. In the short term we wish 
to be able to exploit the resources offered by few processor shared-memory 
machines (e.g. Alliant FX/2800, Cray Y-MP or Convex C2/C3), networks of 
workstations, or small configurations of distributed-memory machines such as the 
Intel iPSC/860. As already mentioned earlier we chose the COLUMBUS program 
system to start with because it is very well structured and portable to many 
different machines. In order to achieve our first goal only relatively few structural 
changes are necessary: 

1. A coarse-grain decomposition of the program plus load balancing. 

2. Addressing the most gross scaling problems which can be determined from 
knowledge of the algorithm and empirically without a detailed performance model. 

3. Ensuring that I/O communication and memory requirements do not scale 
excessively with the number of processes. 

The long-term goal is to arrive at an MRSDCI program that will scale to 
massively parallel machines with hundreds of processors. The program that 
realizes our short-term objectives will have only its most significant bottlenecks 
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removed and will require only localized modifications of the sequential code. A 
massively parallel implementation will require construction of a detailed perfor- 
mance model and exploitation of parallelism at all levels of the code, necessitat- 
ing possibly extensive restructuring and rewriting. 

In our present work we concentrated on the most important computational 
step, i.e. the hamiltonian matrix times trial vector product in program CIU D G  
of the COLUMBUS program package (see Sect. 1.1). In the meantime a parallel 
version of the present AO integral program ARGOS [19] has been obtained as 
well [20]. But it is clear from the beginning that all the other steps mentioned in 
Sect. 1.1 must be parallelized eventually. 

Our decision of how actually to proceed depended on a few other more general 
considerations which are worth mentioning. First of  all, portability is a very 
important issue. Since the parallelization of the complete COLUMBUS package 
is a major undertaking it is, of  course, extremely desirable that the resulting code 
operates on as many different machines with a minimum of changes necessary. 
Since the sequential COLUMBUS program is very weil structured and portability 
is very well taken care of there [3] we had good reasons to expect that we could 
make good use of these features also here. Software for parallel computers is still 
expected to undergo basic changes and developments in the future. Thus, we tried 
to set up out strategy in a way that it is not coupled too strongly to a certain 
product, and that later changes could be done without too much difficulty. From 
that point of view (and also for other reasons discussed below) parallelization via 
compiler is not advisable. Explicit message passing is much more suited for our 
purpose since it is very simple in its functionality and makes the underlying 
parallel structures of the programs clear. We do not expect that this is the final 
way to approach parallelism hut, from a pragmatic point of  view, this procedure 
will give us sufficient flexibility for the future with a minimum amount of effort 
and acceptable performance improvements today. 

2 Parallel algorithm 

2.I General considerations 

As discussed in the Introduction, the sparse matrix-vector product of  the 
hamiltonian matrix and a trial vector is the most time consuming step for large-scale 
MRSDCI wave functions. Thus we concentrated in our first efforts to parallelize 
the COLUMBUS program on that section of the code. This sparse matrix-vector 
product is needed during the iterative Davidson diagonalization and is part of the 
program CIUDG. Its overall loop structure is characterized in Fig. 1. 

loop over pairs of CI vector segments 

loop over types of indices (0-4 internal) 

loop over internal indices 

loop over forrnulas for a given set of 

internal orbitals 

loop over upper walks 

dense matrix kernels 

Fig. 1. Loop structure for the multi- 
plication of the hamiltonian matrix 
and a trial vector as performed in 
subroutine MULT( ) 
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The innermost part consists of  the dense-matrix kernels mentioned at the end 
of Sect. 1.1. In a very fundamental way the COLUMBUS CI code and most 
other modern MRSDCI codes have been exploiting fine grain parallelism via 
these kernels for many years. Large calculations are reported to sustain over 
230 MFLOPS on a single Cray Y-MP cpu [21]. However, the dimension of the 
matrices involved is usually the number of external orbitals in a symmetry block, 
which is O(10-100). This is insufficient for efficient distribution on all except the 
most closely coupled processors (e.g. on 6 processors of  an Alliant FX/2800 a 
100 x 100 matrix multiply runs at 156 MFLOPS, a speedup 4.5 relative to the 
single processor timing). Thus one has to look for coarser granularity at which 
parallelization should take place. 

The DO loops immediately surrounding the low-level matrix operations (see 
Fig. 1) are over rearrangements of the electrons in the internal orbitals which 
share the same matrix element structure. In the terminology of G U G A  these are 
the number of upper walks starting from the loop head of an individual loop. 
Parallelization of  this loop would be straightforward as contributions are made 
to disjoint sections of the result vector. However, there is still insufficient 
granularity for a distributed memory environment, and worse, the number of  
upper walks is empirically found to vary greatly, sometimes averaging only 1-3. 

Rising further up the nested loop structure we pass through code that is 
driving the computation for each individual formula of the formula tape, 
through loops over internal MO indices and over the type of integrals being 
processed ( 0 - 4  internal indices). There is rauch opportunity for parallelism hefe, 
but the structure of the code is quite complex. In addition, the flow of control 
and data, and the distribution of  time, are very sensitive to the nature of  the 
reference space and the DRT. 

The outermost loop in the matrix-vector product routine runs over pairs of 
segments of the trial (v) and result (w) vectors. This loop is nearly perfect for our 
purpose. 

• It provides the most coarse-grain decomposition possible. 

• In a modestly parallel environment we can largely ignore the complexity of the 
control flow beneath. 

• Each process only needs to hold at most four vector segments (two for each v 
and w) and thus the memory requirements do not rise excessively with the number 
of processors. 

• The number of tasks is actually proportional to the square of the number of 
segments, thus it is possible to have a sufficiently large number of tasks to make 
load balancing effective. 

2.2 Structure of the parallel program 

As discussed in Sect. 1.2, we use a message-passing model for parallelization. The 
actual implementation is performed via the portable programming toolkit 
T C G M S G  developped by one of us (RJH) [22]. The toolkit is available by 
anonymous FTP from ftp.tcg.anl.gov. TCGMS G  supplies a set of Fortran and C 
callable library routines by which the message passing can be introduced into the 
application program code. A Single Program Multiple Data (SPMD) approach 
is used. T C G M S G  is available on a large variety of shared memory and 
distributed-memory machines. 
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M A I N  

CALL DIAGON () 

END MAIN 

SUBROUTINE DIAGON ( ) 

D O  I T E R  = 1 , N I T E R  ! Davidsonlypesubspaceiteration 

CALL MULT () 

ENDDO ITER 

END DIAGON 

SUBROUTINE MULT () 

DO SEGI = 1 , NSEG 

READ WSEGI , VSÆG1 

DO SEG2 = 1 , SEGI 

READ WSEG2 , VSEU2 

U P D A T E  Ws£G1 , WSEG2 ! Contributions from ltsEGl,SF.G2and 

! Hse~2~eG~ hamiltonian blocks 

WRITE wse62 

ENDDO SEG2 

WRITE WSEGI 

ENDDO SEGI 

END MULT 

Fig. 2. Structure of the sequential program CIUDG 

In Figs. 2 and 3 the basic structures of the sequential and the parallel 
C IUDG programs are presented. For  the present purposes, the most important 
feature in the sequential code (Fig. 2) are the loops over segment pairs of the v 
and w vectors. Additional logic (not shown in the figure) is required to handle 
the SEG1 = SEG2 cases and the case SEG1 = 1, which refers, in our segmenta- 
tion structure, to CSFs with zero and one external orbital occupancies. In the 
parallel case (see Fig. 3) all processes start execution at the top of the program. 
After some initialization and other preparatory work, including setting up a 
starting guess for the trial vector v, all processes enter subroutine DIAGON(  ) 
where the iterative Davidson diagonalization step is performed. Before calling 
subroutine MULT(  ) (multiplication of the hamiltonian matrix and the trial 
vectors) process 0 broadcasts a flag telling all other processes to continue with 
their work. In subroutine MULT(  ) we find the identical loop structure over 
segments as in the sequential case (Fig. 2). However, in addition, the decision is 
made which process has to update a given segment pair. This is done by a load 
balancing algorithm. SEG12 effectively maps the double loop over SEG1 and 
SEG2 into a single loop index. The function nxtväl( ) assigns the next free index 
value from a shared counter to the variable NEXT for each individual process. 
SEG12 is incremented until the value of NEXT is reached in which case the 
updating of that particular segment pair is done. Each process owns its local 
copy of the w vector but shares the trial v vector with the other processes. 

When the loops over segment pairs are finished the partial results for the w 
vector computed by the individual processes are collected by a global sum 
operation at process 0. In subroutine DIAGON(  ) only process 0 is allowed to 
proceed further and do the remaining computational steps of the Davidson 
iteration. The other processes remain in a waiting position at the broadcast 
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LOOP: 

MAIN 

initialize processes 

NPROC = nnodes() !mtalnamberofprocesses 

ME = n o d e i d ( )  ! numberofthenode 

CALL DIAGON () 

FLAG = ISTOP 

broadcast FLAG from process 0 to other processes 

CALL pend ( ) ! close process 0 

END MAIN 

SUBROUTINE DIAGON ( ) 

DO ITER = 1 , NITER ! Davidson type subspace iteration 

FLAG = IRUN 

DO ! loop forever 

broadcast FLAG from process 0 to the other processes 

IF (FLAG .EQ. ISTOP) CALL pend() l alldone 

CALL MULT ( ) 

IF (ME .EQ. 0) exit LOOP 

ENDDO LOOP 

• • • : R e s t  ofDavidson iteration 
ENDDO ITER 

END DIAGON 

SUBROUTINE MULT ( ) 

SEGI2 = 0 

NEXT = nxtval(NPROC) 

:ge t  inder from pool of  available indices ( load balancing) 

DO SEGI = 1 , NSEG 

DO SEG2 = 1 , SEGI 

SEGI2 = SEGI2 + 1 

IF (NEXT .EQ. SEGI2) THEN 

READ V SEG1, W$£GI(ME ) ! only i f  not already in core 

READ VsE~2, WSEG2(ME) 

UPDATE WSEGI(ME) , WSEG2(ME) 

! Contn'butions from HsÆal,•£G 2 and Hsea2.~eo 1 hamiltonian blocks 

WRITE WsEa2(ME) tO local file 

ger NEXT from pool of available indices 

' load balancing 

ENDIF 

ENDDO SEG2 

if update done on segment SEGI WRITE WSF.G I (ME) to local 

file 

ENDDO SEGI 

global surn of w to processor 0 

END MULT 

Fig. 3. Structure of the 
parallel program CIUDG 

statement ready to enter MULT( ) for the next time. In case that the Davidson 
iterations are not finished yet process 0 broadcasts a message to the other 
processes to continue (FLAG = IRUN).  Otherwise process 0 leaves subroutine 
DIAGON(  ) and FLAG is set to ISTOP. Broadcasting FLAG now by process 
0 causes all other processes to quit. Finally process 0 is closed as well. 

As has already been mentioned above, presently, several files are assumed 
shared between processes. File organization and access mode in subroutine 
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Proce¢s 0 1 . . . . . . . . .  N P R O C  - 1 

Fig. 4. Data flow in sub- 
routine MULT( ) 

MULT( ) is shown in Fig. 4. During construction of the matrix-vector product, 
segments of the CI vector are read by all processes from a single shared file. This 
file is updated by process zero during the Davidson diagonalization procedure. 
In order to ensure that all write buffers are flushed and that read buffers are 
invalidated it has been found necessary to close and re-open this file in all 
processes immediately prior to the global barrier implied by the broadcast of 
F L A G  (in subroutine M U L T ( ) )  described above. 

The implementation of the procedures just described by subroutine calls to 
the TCGMSG library is straightforward. Basically, the modifications in subrou- 
tine MULT( ) were the only ones worthwhile mentioning with one important 
exception. In the original sequential program the segment structure of the CI 
vector is determined for a given amount of core memory so as to minimize the 
number of segments. In the sequential case, there is no advantage to achieve a 
balance of the size of different segments. Typically, the maximum number of 
segments is 3 to 5; in most applications enough memory is available to hold the 
complete v and w vectors in core. In the case of the parallel program the 
situation is different. A larger number of segments is required (typically 20 to 50) 
in order to balance the work load over processes. Unfortunately, the sequential 
program showed in such cases (for which it was not designed) an approximately 
quadratic increase of computer time with the number of segments (see Fig. 5 and 
Sect. 3.1). By analyzing the sequenfial program code we found the reason for this 
increase in the processing of the formula tape. Since only one formula tape 
containing the information for all CSFs was constructed, for each segment pair, 
the complete file had to be read, the information for each formula had to be 
unpacked and checked whether it contributed to the particular segment pair. 
Thus, especially in multireference cases for which the formula tape is very long, 
the amount of effort to extract useful information for one segment pair was very 
small compared to the total amount of work of analyzing the entire formula 
tape. There were two ways out of that dilemma. One was to sort and split the 
formula tape into several files. This procedure had the disadvantage that the 
structure of the formula tape depended on the segmentation of the CI vector and 
had to be changed with changing segmentation. The amount of I/O for reading 
the formula tape would still have remained appreciable. The solution adopted 
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CPU time (sec.) 

400 

300 

200 

100 

formula  tape 

alculat ion of loops 

number  of segments  

Fig. 5. Comparison of 
timings (for one com- 
plete CI iteration, Cray 
Y-MP) for the formula 
tape case vs. direct cal- 
culation of the internal 
contribution to the CI 
matrix elements. The 
C»-pVTZ test case 
was used 

was to abandon the formula tape completely and to recalculate, for each segment 
pair, specifically the necessary formulas on the fly. In that way the respective I /O 
was eliminated completely at the cost of  the cpu time required to calculate the 
formulas directly. This cost for the formula generation only depends on the 
structure of  the internal space. Except for overlapping cases between segment 
boundaries, work can be organized so that each formula is calculated only once. 
Thus, the computational work connected with the formula calculation would be 
more or less independent of  the segmentation scheme. However, since some 
overhead with setting up the DO loops in the D R T  and validating the internal 
walks on the D R T  was necessary we obtained linear dependence on the number  
of  segments. This is a great progress compared to the previous quadratic 
behavior. Detailed timings will be given in Sect. 3.1. 

3 Performance 

The parallel C I U D G  program is currently running on a rather wide selection of  
machines: Sun workstations, Personal Iris, Convex C2, Cray Y-MP, Alliant 
FX/2800 and Intel iPSC/860. Adaption of  the program to other machines, like 
the IBM RS/6000 series or the Intel Touchstone Delta will follow in the near 
future. In this section we present timings for three typical test cases in order to 
demonstrate the efficiency but also the bottlenecks of  our program (for an 
evaluation of  these timings see also authors '  note at the end of the article). 

These test examples were set up in the following way: all calculations were 
performed for the electronic ground state of  the CH 3 radical. A CAS (complete 
active space) with 7 valence orbitals was chosen for the determination of  the 
reference configurations. Within that configuration space MCSCF calculations 
were performed. For  the CI expansion all configurations belonging to the CAS 
(without application of symmetry restrictions) were used to construct all single 
and double excitations from the valence orbitals into the full virtual orbital 
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space. The K-shell orbital was frozen. For  more details on the calculations see 
Ref. [23]. Depending on the basis set and the geometry 3 different cases were 
finally treated: 

(a) C»-p VDZ: The molecular geometry was D3h symmetry (Rci-i = 2.039 bohr). 
Only C2~ symmetry was utilized in our program. The basis set was of polarized- 
valence double-zeta (ec-pVDZ) quality and taken from the compilation by 
Dunning [24]. It consisted of a 9s4p ld Gaussian basis on carbon contracted to 
[3,2,1] using general contraction techniques. For  hydrogen a 4slp basis con- 
tracted to [2,1] was used. The 29 orbitals were  distributed over the four 
irreducible representations of  C2v a s  al 14, bi 5, b 2 8 and a2 2. The CAS consisted 
of 2 - 5  al, 1-2  b2 and 1 bi orbitals which gave 188 reference configurations. The 
dimension of the final CI expansion was 70,254. 

(b) C2~-p VTZ: This case is identical to the previous one except that the AO 
basis was of polarized-valence triple-zeta (ce-pVTZ) quality [24] (C: lOs5p2dlf 
[4,3,2,1], H: 5s2pld [3,2,1]). The 72 basis functions were distributed over the 
irreducible representations as: al 30, b~ 14, b2 20, a2 8. The size of  the CI 
expansion was 624,334 CSFs. 

(c) C~-p VTZ: A distorted geometry of C~ symmetry and the same pVTZ basis 
as in case (b) was chosen. The same CAS (7 active valence space orbitals) as 
above gave rise to 784 reference configurations which resulted in a CI expansion 
of 2,528,400 CSF. 

3.1 Efficiency of the segmentation scheme 

The dependence of computer time on the segmentation of  the v and w vectors is 
of crucial importance since the distribution of work to the individual processor 
is done via segment pairs, and load balancing requires that the size of the 
segments is not too large. Typically, we used 20 to 50 segments. Ideally, the total 
execution time should remain unaffected by the segmentation. That this was not 
the case for our original sequential program has already been discussed in Sect. 
2.2. 

In addition, the I/O requirements in connection with the segmentation 
scheme have to be considered as well. As discussed previously, the multiplication 
H "  v is driven by the four indices of the two-electron integrals. There are five 
cases which are classified according to the number of external indices as 4-, 3-, 
2-, 1- and 0-external. In the 4-, 3- and 1-external cases the updating of  w can be 
achieved by passing once through all segments. In the remaining 2- and 0-exter- 
nal cases each segment pair has to be considered individually. Thus, the 4-, 3- 
and 1-external integrals have to be read from disk Nseg/2 times and the 2- and 
0-external integrals Nseg(Nseg - 1)/2 times where Nseg is the number of segments. 
The factor of one half for the first part of integrals comes from the fact that in 
this case the passage through the segment pairs can be organized in a way that 
two consecutive segments are combined thus reducing the reading of  the 4-, 3- 
and 1-external integrals by approximately a factor of two. Moreover, the v vector 
segments have to be read from disk and the w vector segments have to be read 
from and written to disk. The amount  of data to be transferred in that case is 3/2 
(N~~g -- 1)Nci in working precision units. 

The efficiency of the segmentation scheme depends on other factors as well. 
The direct calculation of the formula tape information is basically scalar whereas 
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Table 1. Timings for the sequential CIUDG program in dependence on the segmentation of the CI 
vector  a,b 

4-ext. 3-ext. 2-ext. 1-ext. 0-ext. H" v Total 

Cray Y-MP 
Czv -p VD Z 

no segmentation 0.77 1.9 13.0 16.2 4.4 36.2 36.3 
30 segments 0.77 2.1 27.4 16.7 23.4 70.6 70.7 

C2o-pVrZ 
no segmentation 10.3 9.1 32.4 18.4 4.8 75.0 (75.3) 75.3 (75.9) 
30 segments 10.3 9.4 52.1 18.8 23.4 114.7 (117.6) 115.1 (118.2) 

C a -p VTZ 
no segmentation 93.9 46.9 229.5 72.6 25.7 468.6 (469.2) 470.0 (471.6) 
30 segments 94.0 47.8 265.2 73.1 87.6 569.8 (580.6) 571.2 (583.1) 

Alliant FX/2800 
C»-pVDZ 

no segmentafion 6.7 20.9 69.1 56.5 10.9 164.6 166.7 
30 segments 6.9 21.3 132.1 57.7 46.4 271.4 273.6 

C2v-pVTZ 
no segmentafion 367.1 354.4 568.5 139.1 52 .7  1485.3 1508.2 
30 segments 374.9 357.7 904.6 140.2 88.1  1909.0 1932.2 

Convex C220 
C2~-pVDZ 

no segmentation 4.9 12.4 49.0 52.4 16.0 134.7 135.3 
30 segments 4.9 12.9 127.0 54.2 71.8 273.1 273.8 

C2~-pVTZ 
no segmentation 136.6 127,4 234.0 88.1 31.2 617.6 623.7 
30 segments 137.4 130.3 452.3 89.5 88.9 904,4 910.5 

a Timings in cpu seconds for one Davidson iteration (wall clock times are given in parentheses) 
b For the definition of the individual contributions see the text 

for the dense matr ix  operat ions vector operat ions can be used. Also, I /O is 
accounted for differently on different machines.  Thus,  in order to give an 
overview over the performance of the segmentat ion we consider it useful to 
discuss timings on a series of computers.  The influence of all these individual  
factors can already be investigated at a single processor level. Thus,  for the 
t imings described in this section we used for simplicity our  sequential  p rogram 
extended by the possibility of direct calculat ion of  the formula  tape informat ion .  
Since the p rogram code for upda t ing  one segment pair  of  w is identical in the 
sequential  and  the parallel  p rogram the conclusion drawn here fully pertains to 
the calculations with the parallel p rogram to be described in the next section. 

In  Table  1 timings for calculations with and without  segmentat ion of v and  
w are compared for several computers.  In  the table the total  time for one 
Davidson  i terat ion is split up into its individual  components  according to the 
classification of the two-electron integral indices as explained above. As to be 
expected, segmentat ion has by far the largest effect for the 2- and  0-external cases 
which depend - as explained above - on cont r ibut ions  from each pair  of  seg- 
ments.  

In  case of the Cray Y - M P  these times were further b roken  down by means 
of Profiling [25] (see Table 2). In  this table the total  time for one i terat ion is 
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Table 2. Individual timings on the Cray Y-MP for the sequential CIUDG program a,b 
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C2v -p VD Z C2~ -p VTZ C I-p VTZ 

no segm. 30 segm. no segm. 30 segm. no segm. 30 segm. 

formula calc. 
3-ext. 0.1 0.1 0.1 0.1 0.1 0.1 
2-ext. 2.5 13.0 2.3 11.6 3.1 13.5 
1-ext. 9.3 9.8 9.2 9.7 9.9 9.6 
O-ext. 4.2 21.5 4.0 21.4 23.5 80.0 

formula tp. (total) 16.1 (39%) 44.4 (60%) 15.6 (19%) 42.8 (35%) 36.6 (7%) 103.2 (17%) 
matr. multipl. 25.7 (61%) 29.7 (40%) 64.8 (81%) 78.4 (65%) 479.5 (93%) 501.4 (83%) 
plus overhead 

total 41.8 74.1 80.4 121.2 516.1 604.6 

a Timings in cpu seconds for one Davidson iteration 
b For the definition of the individual contributions see the text 

broken down into contributions due to the formula calculation, the dense matrix 
routines plus overhead including logic and cpu time assigned to the I/O. The 
charging of  cpu time for I/O is almost negligible here. The three examples are 
arranged in increasing work done in the external space. This is achieved by either 
increasing the basis set ( D Z  --* T Z )  or by reducing the symmetry (C» --* C1 ). The 
generation of the formula data is independent of  the external orbital space. This 
fact is nicely reflected in the timings of  Table 2. The timings for the 3- and 
1-external cases are practically independent of  segmentation whereas in the 2- 
and 0-external cases an increase in computer time can be observed. However, 
with one exception, timings remain constant for a given segmentation which 
means that with increasing basis size (keeping the internal space unchanged) the 
relative importance of the formula computat ion is significantly reduced. Only in 
the case of  the 0-external (all-internal) indices the time for the formula calcula- 
tion increases when going f rom C2v to C1 symmetry because this is the only case 
where it is possible to take symmetry into account. The formula calculation 
amounts to 60% of the total time for one iteration in the C2v-pVDZ case. 
However, this example has been included for tesing purposes only and contains 
a rather small external orbital space. It  is not characteristic for high-level 
calculations. The proport ion of the formula calculation is significantly reduced 
for the larger basis sets. It  could have been still further reduced if the work for 
the external space had been increased by increasing the basis set and not by 
reducing the symmetry. Figure 5 shows a comparison of  timings for the old 
program where the complete formula tape was read for each segment pair with 
those obtained with the present scheme. The advantages of  our new procedure 
are obvious. One can see that in this latter case computer  time increases linear 
with N~eg. This is an acceptable behavior since the number of  tasks which can be 
produced in that way increases quadratically with Nseg- One should also mention 
here that the CAS reference space is a very demanding one and that for more 
restricted M R  cases the importance of the formula generation will decrease 
significantly. The timings for the unsegmented calculations show that the recalcu- 
lation of the formulas is also an interesting alternative for the sequential 
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ordinate axis). The data 
were obtained on a Con- 
vex C2 and the C2~-pVTZ 
test case was used 

program itself. The break-even point between the versions öf reading the 
complete formula (old) and recalculating only what is n~eded (new) is situated in 
all cases investigated at rather small segment numbers (6 to 7). 

The timings for Convex and Alliant (see Table 1) show a dependence on 
segmentation which is very similar to those for the Cray. Again, the 2- and 
0-external cases show a significant increase in computer time from the unseg- 
mented to the 30 segment case. Contrary to the Cray data transfer from and to 
disk is also reflected in the cpu timings. With the help of  a simple test program 
the cpu time per MB transferred data was determined and the actual cpu times 
were calculated from the known amount  of  data transferred in each iteration 
cycle. In Fig. 6 the relative importance of individual contributions is depicted for 
the Convex C2. Timings for the 4-, 3- and 1-external integrals and the » and w 
vectors depend linearily on the number of  segments. The 2- and 0-external 
integral file is much smaller than the 4-, 3- and 1-external file. However, since 
this file is read Nseg(Nseg- 1)/2 times (as opposed to Nseg/2 times for the other 
part  of  the integral file) it soon becomes a prominent factor and finally 
dominates the I/O. Data  transfer for the v and w vectors turns out to be a very 
important  factor as well. The cpu time for the hamiltonian matrix times vector 
product (excluding the cpu time for the I/O) behaves almost linearily with 
increasing number of  segments. A similar situation is also found in case of  the 
Alliant. 

3.2 The parallel program 

After having investigated the characteristic behavior of  the sequential program in 
some detail we are now ready to discuss the performance of the parallel program. 
We concentrate on two questions: how well does our load balancing scheme 
work and what speedup can actually be achieved? An unambiguous answer can 
only be obtained on dedicated machines without any other jobs interfering. In 
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the following, we will discuss such results obtained on an eight processor Cray 
Y-MP and an Alliant FX/2800 by comparing cpu and wall clock times. For the 
Convex C2 for which a dedicated system was not available to us at present. In 
addition to the just mentioned shared memory machines, we also will present 
results for the iPSC/860. 

3.2.1 Cray Y-MP. Table 3 shows timings (cpu- and wall clock times) obtained 
on a dedicated eight processor Cray Y-MP for our two larger test cases. The 
results are overall very satisfactory. Comparison of cpu and wall clock times (no 
given in the table) for the individual steps of H ' v  shows very small time 
differences which means that I/O is very well taken care of (standard Fortran I/O 
routines have been used throughout except for the 4- and 3-external two-electron 
integral files for which asynchronous AQREAD [26] routines were employed). 

Table 3. Timings for the parallel C IUDG program on a dedicated 8 processor Cray Y-MP a,b 

Proc. 4-ext. 3-ext. 2-ext. 1-ext. 0-ext. H . v  Total 
n o .  

cpu cpu cpu cpu cpu cpu wall cl. cpu wall cl. 

C2v -13 V T Z  
1 proc. 

4 procs. 

8 procs. 

C1- p V T Z  
1 proc. 

4 procs. 

8 procs. 

0 10.4 9.4 51.9 18.9 23.1 114.5 118.4 114.9 119.2 

0 3.6 3.6 11.4 5.7 4.8 29.3 30.5 29.7 32.6 
1 1.5 1.1 17.2 2.0 6.9 29.0 30.5 
2 3.2 2.7 9.5 8.2 5.1 28.9 30.5 
3 2.1 2.0 13.7 3.0 6.3 27.3 30.5 

0 1.4 1.9 4.8 2.8 2.1 13.1 16.6 13.6 20.5 
1 0.7 0.5 7.8 0.8 3.4 13.4 16.6 
2 1.5 1.1 3.5 5.7 2.7 14.6 16.6 
3 0.7 0.6 8.5 0.9 3.7 14.5 16.6 
4 1.8 1.6 6.1 2.6 2.5 14.6 16.6 
5 1.5 1.3 7.4 2.3 3.1 15.7 16.5 
6 1.4 1.1 6.9 1.8 2.5 13.8 16.6 
7 1.5 1.3 7.3 2.1 3.2 15.5 16.5 

0 94.1 47.7 264.8 73.3 86.4 568.4 578.8 570.0 581.9 

0 22.8 10.4 74.8 15.7 18.2 1 4 2 . 5  149.9 144.2 158.3 
1 26.1 16.5 59.5 22.7 20.0 145.4 149.9 
2 19.4 9.5 71.5 13.9 20.6 135.5 149.9 
3 26.3 11.6 59.6 21.3 27.8 147.1 149.9 

0 13.3 7.7 18.2 14.8 14.0 68.2 80.9 70.0 98.0 
1 13.1 5.3 34.3 8.0 9.6 70.6 80.9 
2 16.4 8.3 28.1 11.6 8.1 72.8 80.9 
3 6.5 2.8 44.2 4.1 13.7 71.8 80.9 
4 6.6 3.5 37.7 5.2 11.6 65.0 80.9 
5 13.1 8.8 26.2 11.6 8.8 68.9 80.9 
6 13.0 4.4 40.8 7.4 11.4 77.4 80.9 
7 13.1 7.6 36.6 11.3 9.8 78.8 80.9 

"Timings in cpu and wall clock seconds for one Davidson iteration with 30 segments 
b For the definition of the individual contributions see the text 
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The total timings for the H ' v  step are an indication of how weil our load 
balancing procedure works. The cpu times are a measure of  the work done by 
each process. The wall clock times are identical for all processes because of the 
necessary synchronization after finishing the H "  v calculation. The average cpu 
efficiency as defined as average cpu time for H "  v divided by the wall clock time 
is 97%, 94% and 87% for the 1, 4 and 8 process calculations in the C2~-p VTZ 
case and 98%, 95% and 89% in the CI-p VTZ case. The total timings (last two 
columns in Table 3) include the global sum for the w vector and the Davidson 
subspace manipulation which is done by process zero only. The cpu time for this 
step constitutes only a minor amount  whereas the wall clock time increases 
significantly with the number of  processors. This is possibly due to a non-optimal 
installation of the global sum operation. The speedups for the H • v step (wall 
clock time for the single-processor calculation divided by the respective wall 
clock time for the multiple-processor calculation) are: 

C2v-p VTZ 3.9 (4 processes) and 7.1 (8 processes) 

and 

CI-p VTZ 3.9 (4 processes) and 7.2 (8 processes). 

The speedups based on timings for one complete iteration are reduced to 3.7/5.8 
(C2v-p VTZ) and 3.7/5.9 (CI-p VTZ) because of the deterioration of the perfor- 
mance as just mentioned. MFLOPS rates have been determined by the hardware 
processor monitor  (hpm [25]). Since in our test runs on the dedicated computer 
we had performed only one full iteration the overhead from initial (Bk iteration 
[27]) and final (Davidson correction [28]) steps deteriorate the results in an 
unbalanced way. Therefore we tried to correct for these influences and estimated 
the true MFLOPS rate in the Cl-p VTZ case as follows: for a single process on 
the dedicated computer one Davidson iteration including the aforementioned 
overhead gave 144 MFLOPS per cpu second and 138 M F L O P  per wall clock 
second. Since we obtain a speedup of a factor of  7.2 for the H "  v step in case of  
eight processes we have achieved about 990 MFLOPS for that part  of  the 
program. Since the overall increase for the complete iteration is (for the moment)  
only a factor of  5.9 the overall speed is 814 MFLOPS.  In calculating relative 
speedups we have taken as reference so far a sequential calculation with 
segmentation. The numbers obtained in this way give a realistic picture of  the 
efficiency with which the individual processors are utilized. However, from the 
point of  view of throughput one has of  course to compare with the most efficient 
sequential case which is the unsegmented one. I f  one takes the wall clock times 
for the unsegmented calculation as given in Table 1 the speedup for the 8 
processor case (G-P VTZ) is reduced to 4.8. 

3.2.2 Alliant FX/2800 and Convex C2. Results for Alliant and Convex are 
presented in Table 4. For the Alliant a dedicated computer was available. Thus, 
cpu and wall clock times are given. Test runs on the Convex could only be 
performed under heavy load. Therefore, we tabulate for Convex cpu times only. 

The distribution of cpu times over the individual processes shows again that 
load balancing works quite well. However, in case of  the Alliant we encountered 
orte special problem. For  all other machines investigated the sum of the cpu 
times for a given segmentation was practically independent of  the number of  
processes. As Table 4 shows this is not the case for the Alliant FX/2800. The 
total cpu time (sum over all processes) for H ' v  inereases from 268.8 sec (1 
process) via 279.3 sec (4 processes) to 390.1 sec (8 processes). Thus, even though 
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Table 4. Timings for the parallel CIUDG prograrn on a dedicated Alliant FX/2800 and a Convex C220 a'b 

Proc. 4-ext. 3-ext. 2-ext. 1-ext. 0-ext. H - v  Total 
n o ,  

cpu ClOu cpu cpu cpu cpu wall cl. cpu wall cl. 

Alliant FX/2800 
C2v-pVDZ 
(30 segm.) 

1 proc. 0 5.3 17.4 129.1 61.1 46.9 268.8 271.0 271.8 

4 procs. 0 1.2 3.9 39.6 12.2 13.2 75.6 77.0 79.9 
1 2.2 7.5 28.5 22.4 8.9 74.0 77.0 
2 0.8 2.2 41.8 6.8 14.6 71.9 77.0 
3 1.6 4.8 28.4 23.8 12.4 75.8 77.0 

8 procs. 0 0.5 2.3 23.8 6.6 6.9 46.6 52.0 52.6 
1 0.5 1.7 25.7 5.0 7.8 47.1 52.0 
2 0.6 1.5 25.3 4.2 8.5 46.5 52.0 
3 1.4 4.8 18.6 14.1 5.0 49.7 52.0 
4 0.9 4.3 22.7 11.2 6.7 51.6 52.0 
5 0.9 2.1 24.1 7.4 7.1 47.8 52.0 
6 1.4 4.8 19.0 14.7 5.8 51.5 52.0 
7 0.7 1.9 17.8 15.9 8.5 49.3 52.0 

Convex C220 
C2~-pVTZ 

1 proc. 0 146.5 138.1 458.6 88.2 83.9 921.4 928.3 

4 procs. 0 34.8 29.4 126.3 16.6 20.8 229.9 
1 30.8 31.9 120.6 16.6 22.4 224.1 
2 31.3 25.7 129.4 26.6 25.9 240.6 
3 51.5 53.5 89.0 29.6 15.3 240.2 

274.0 

81.0 

60.0 

"Timings in cpu and wall clock seconds for one Davidson iteration with 30 segments 
b For the definition of the individual contributions see the text 

paralielism is very weil established the final speedups are poor  because of the 
increase of  the total  cpu time. F r o m  the behavior  of C I U D G  on all other 
computers  we were sure that  this increase in cpu time could no t  come f rom our  
code directly. Tests with simple benchmark  programs finally showed that  the I /O 
performed in parallel  was responsible for that  artificial increase of  the cpu time. 
Such a behavior  was not  observed on other systems. Since this problem is clearly 
related to the operat ing system we do not  see any possibility at the m o m e n t  to 
improve the si tuation.  

3.2.3 Intel iPSC/860. In  contras t  to the previously described shared memory  
machines  the iPSC is a d is t r ibuted-memory machine.  However,  these architec- 
tural  differences are hidden by T C G M S G .  In  the way we had designed the 
parallel C I U D G  program it was possible to port  C I U D G  to the iPSC without  
changing a single line of code concerning parallelization. W h a t  had to be 
changed was l inking the appropr ia te  l ibrary for BLAS rout ines and  routines 
concerning I /O which is managed  via the Concur ren t  File System [29]. Only  wall 
clock times are available. As T C G M S G  works at the m o m e n t  one node is 
dedicated to the nextval( ) server which is responsible for load balancing.  This 
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Table 5. Timings for the parallel CIUDG program on the iPSC/860 a,b,c 

M. Schüler et al. 

Proc. 4-ext. 3-ext. 2-ext. 1-ext. 0-ext. Sum H ' r  d dgop e Total 
n o .  

1 processor 0 8.3 12.9 182.7 66.4 74.8 345.1 403.1 5.9 415.6 

3 processors 0 3.6 5.2 53.4 33.8 25.3 121.3 146.4 6.7 159.5 
1 3.1 4.2 66.9 18.1 24.5 116.8 146.4 1.3 
2 2.7 3.6 66.0 14.8 26.2 113.3 146.4 1.5 

sum 9.4 13.0 186.3 66.7 76.0 351.4 

7 processors 0 2.1 2.1 29.0 20.0 16.3 69.5 98.3 16.3 121.1 
1 1.9 1.6 34.4 6.5 14.0 58.4 98.1 5.1 
2 2.2 2.1 32.3 9.0 13.4 59.0 98.3 5.2 
3 0.9 0.8 33.4 3.4 14.7 53.2 98.1 4.6 
4 1.0 1.1 37.3 4.5 14.0 57.9 98.1 5.1 
5 2.6 3.1 31.9 12.3 12.9 62.8 98.0 5.0 
6 2.6 2.6 30.5 11.4 12.0 59.1 98.1 4.7 

sum 13.3 13.4 228.8 67.1 97.3 419.9 

a Timings in wall clock seconds for one Davidson iteration 
b For the definition of the individual contributions see the text 
c The C»-pVDZ test oase with 30 segments is used 
d Includes I/O for reading and writing the v and w vectors but excludes the time for the global sum 
e Global sum (see Fig. 3) 

node, even though formally used dur ing the execution of C I U D G ,  is no t  counted  
in the following discussion. 

First  tests very quickly showed that  efficient t rea tment  of I /O is crucial for 
working with the iPSC. For  the 4- and 3-external integral files we use the 
asynchronous  I R E A D (  ) rout ine [29] and  for the other integral files and  for 
reading and  writ ing the v and  w segments C R E A D (  ) and C W R I T E (  ) [29]. The 
results of  our  final calculations are collected in Table  5. Looking first at the 
t imings of the individual  sections 4- to 0-external and  the sum for each process 
(hor izonta l  sum) one finds that load balancing works abou t  as well as for our  tests 
on the other computers.  The increase in total  time spent for each case (vertical 
sums) with the n u m b e r  of processors is a t t r ibuted to the decreasing efficiency to 
access the integral files individually.  This increase is especially remarkable  for the 
2- and 0-external cases. The difference between the timings in the horizontal  sums 
and those in co lumn H -  va re  due to reading and  writ ing the v and  w vectors. The 
effort necessary for these disk operat ions  is still substantial .  The jus t  described 
trends cont inue  when the number  of processors is increased. Calculat ions with 15 
processors do not  show any addi t ional  speedup compared  to the 7 processor case, 

It would be possible to improve the I /O for the 2-, 1- and  0-external integrals 
by in t roducing asynchronous  I /O in the same way as was done for the 4- and  
3-external integrals. Performing the I /O for the v and w vectors is more difficult 
since these files are treated in direct access mode.  In  any case, it seems to be clear 
that  all these further improvements  of disk I /O would not  lead to satisfactory 
results. We intend to go into a completely different direction and  to remove the 
disk I /O completely by moving  towards a fully asynchronous  d is t r ibuted-memory 
model  as described in Sect. 4. 
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4 Conelusions and outlook 

We could show that our coarse-grain approach to parallelize the CI section of 
the COLUMBUS program is a successful orte. On a 8 processor Cray Y-MP we 
have achieved a speed close to 1 GFLOP per wall clock second for the most 
important part of  the program. The changes which are necessary to port the 
program from one parallel computer to the other are minimal and are auto- 
mated. However, we also have made it clear that, because of the complexity and 
requirements of MRCI programs in general, the work described here has to be 
regarded as a first step. Within the present structure a few technical improve- 
ments, including the acceleration of  the direct formula calculation and of  the 
global sum and data compression schemes [30] for the v and w vectors must be 
made. With these changes a working version of C IU D G  for routine applications 
will be available for shared memory machines. It is also evident from out results 
for the iPSC that these developments alone will not be sufficient. We will have to 
do more about data structures. 

One way to treat structures more efficiently is to move away from the 
excessively synchronous message-passing model (some synchronization will al- 
ways be necessary since we do not have unlimited buffer space available) to a 
fully asynchronous distributed-memory model. Such a model, closely related to 
Linda [31], is described in Ref. [32]. Basically, buffers of data are pur into a 
globally accessible space which is uniformly distributed across all processes. An 
event-driven mechanism provides fully asynchronous access for all processes to 
all of  the data, with a bandwidth for distributed accesses that scales up with the 
number of processes. Work in this direction is in progress on the Intel iPSC/860 
hypercube and is also expected to be of similar benefit on shared-memory 
parallel computers such as the Cray Y-MP or the Alliant FX/2800. 

This distributed-memory model can be used to eliminate the excess I/O on 
the 2-external integrals. The I/O on the v and w vector files scales approximately 
linearly with the number of  segments, and since each process has its own local 
copy the total disk space increases linearly with the number of processes. It is 
proposed to buffer this data with a distributed data model also, exploiting the 
coordination properties of  the Linda-like primitives [31, 32] to handle the mutual 
exclusion required for correct updating. An alternative solution is to use a single 

. shared file with locks at the segment level. 
One of the biggest requirements for disk space usually arises from the 3- and 

4-external integrals. For very large systems this is a bottleneck in even the 
sequential code and work is underway to change to an AO driven scheme 
[33-36]. Initially, the AO integrals will be stored on disk, employing sparsity. 
However, this then readies us for a simple transformation to a so-called 
"double-direct" MRSDCI algorithm, recomputing the integrals only as needed. 
The 0-, 1- and 2-external integrals are still processed in the MO basis. 

At this point we fully expect to have a program that performs effectively on 
few (10-30) processor computers, depending somewhat on the nature of  the 
computation and how effective the I/O subsystem is. The just described program 
features will also put us into the position to effectively use workstations within 
local area networks which, as has already been stressed in the beginning, 
represent a very valuable and widespread source for computational power. 

To go beyond this level, to a massively parallel version, we need to eliminate 
essentially anything that is either serial or actually increases with the number 
of processes/segments. Almost all I/O must be eliminated and the Davidson 
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algorithm must be modified [37] so that only one full v and w vector need be 
manipulated. Amdahl's law [38] is a severe task master on massively parallel 
machines. To get a speedup of  just 500 on a 1000 processor machine (only 50% 
efficiency) the combination of the serial work and overhead due to parallelization 
or lack of load balancing must be less than 0.1% of the parallel work. Such a 
decomposition would give rise to an efficiency of 99.2% on just 10 processors. 
An efficiency of just 50% seems low if performance is out only goal. However, 
it still should be enough that calculations with O(108) or more configurations in 
very large MO basis sets could become quite routine on large parallel computers. 

Authors' note 

The COLUMBUS program system timings presented in this paper represent 
preliminary work and the individual codes have been optimized to different 
extents on the various computer systems. Consequently, these timings should not 
be used directly to assess either the ultimate performance of the. COLUMBUS 
program system or to compare the performance of the different computer 
systems. 
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