
Theor Chim Acta (1993) 84:489-509 Theoretica
Chimica Acta
© Springer-Verlag 1993

A parallel implementation of the COLUMBUS
multireference configuration interaction program

Matthias Schüler 1'*, Thomas Kovar l, Hans Lischka l, Ron Shepard 2,
and Robert J. Harrison 2
1 Institut für Theoretische Chemie und Strahlenchemie der Universität Wien, Währinger Strasse 17,
A-1090 Wien, Austria
2 Theoretical Chemistry Group, Chemistry Division, Argonne National Laboratory,
Argonne 1L 60439, USA

Received February 28, 1992/Accepted May 21, 1992

Summary. In this work a parallel implementation of the COLUMBUS
MRSDCI program system is presented. A coarse grain parallelization approach
using message passing via the portable toolkit T C G M S G is used. The program
is very well portable and runs on shared memory machines like the Cray Y-MP,
Alliant FX/2800 or Convex C2 and on distributed memory machines like the
iPSC/860. Further implementations on a network of workstations and on the
Intel Touchstone Delta are in progress. Overall, results are quite satisfactory
considering the complexity and the prodigious requirements, especially the I/O
bandwidth, of MRCI programs in general. For our largest test case we obtain a
speedup of a factor of 7.2 on an eight processor Cray Y-MP for that section of
the program (hamiltonian matrix times trial vector product) which has been
parallelized. The speedup for one complete diagonalization iteration amounts to
5.9. An absolute speed close to 1 GFLOPS is found. Results for the iPSC/860
show that ordinary disk I/O is certainly not sufficient in order to guarantee a
satisfactory performance. As a solution for that problem, the implementation of
a fully asynchronous distributed-memory model for certain data files is in
preparation.

Key words: Parallel c o m p u t i n g - Multireference C I - COLUMBUS program
system

1 Introduction

Parallel computers promise to change the nature of computation in at least two
ways. The most dramatic change is that the peak speed of the biggest parallel
supercomputers will reach Tera-FLOPS (1012 floating point operations per
second) performance in the middle of this decade. This speed corresponds to an
improvement of four orders of magnitude within two decades taking the Cray 1 S
of the mid-seventies with 160 MFLOPS peak performance as reference. On the
contrary, single processor supercomputer performance will probably not manage

* On leave from: Bereich Informatik, Universität Leipzig, Augustusplatz 10/11, O-7010 Leipzig,
Germany

490 M. Schüler et al.

a factor of 50 improvement during that same period. Single processor work-
station performance- taking the VAXll/780 as s t anda rd - is projected to
improve by over two orders of magnitude over the same time scale. These
TFLOPS machines will only be as expensive as current supercomputers, and will
contain many hundreds or thousands of processors. What the programming
model will be is still not clear, but what is clear at present is that there will be
a two order of magnitude (or more) performance difference between the most
powerful parallel and sequential computers.

However, the most widespread impact of parallel computers will probably
come in the form of cost-effective few (8-64) processor machines affordable by
many small research groups. Such machines might offer increased throughput to
a mix of applications, or provide a single modestly parallel resource for a single
large application. In contrast to traditional vector supercomputers, these new
parallel machines offer much increased scalar performance as well and, indeed,
many "non-vectorizable" algorithms are straightforwardly parallelized.

These thoughts are not idle speculation as in many ways that are true already
now, albeit on a reduced scale. The fastest supercomputer today is the Intel
Touchstone Delta prototype, a parallel computer consisting of a mesh of 528
Intel i860 microprocessors. It has a peak speed of 30 GFLOPS and has been
benchmarked at 13.5 GFLOPS (on both the massively parallel LINPACK and
the computational kernel of a four-index transformation). Intel and other
computer companies, like Cray, are most likely to follow with even more
powerful machines. At the moment, and possibly more significant is that many
groups are beginning to realize that they already own a very powerful parallel
computer in the form of their workstation LAN that is offen comparable to a
present-day supercomputer in capacity. However, the hext realization invariably
is that they do not have the software to exploit these resources.

To perform "new science" on these machines we need first to invest the effort
required to port our software to this new environment and to develop new
methods and algorithms to exploit these new machines. Vector-supercomputers
proved themselves well worth such an investment (Refs. [1-5] represent a small
collection from among numerous other examples) when coupled with theoretical
and algorithmic advances.

Only recently parallel hard- and software have reached a state of reliability
and technological standard which makes it worthwhile to attempt the paralleliza-
tion of such large and complicated programs as ab initio electronic structure
programs. Parallelization of SCF, CI and Coupled Cluster programs is a field of
very active research efforts in many groups (see e.g. [6-10]). However, to our
knowledge, so rar no successful parallelization of a general MRSDCI program
has been reported.

In this paper, we examine in some detail a few-processor parallel implemen-
tation of the multireference single- and double-excitation configuration interac-
tion (MRSDCI) program of the COLUMBUS program system [1-3]. Based on
our present experience some thought is also given to a massively parallel version
of the program.

1.1 The sequential C O L U M B U S program

This section is intended to be only a brief characterization of the standard,
sequential COLUMBUS Program System. For more information see Refs.

Parallel implementation of the COLUMBUS MRSDCI 491

[1 3]. Only those steps which are relevant to our present work of paraUelization
will be discussed in detail.

The COLUMBUS Program System is a collection of Fortran programs for
performing general ab initio electronic structure calculations within the frame-
work of MRSDCI. It is based on the Graphical Unitary Group Approach
(GUGA) [11, 12] and contains the following program sections:

Atomic orbital (AO)-integral generation, Self-Consistent-Field (SCF), Multi-
configuration SCF (MCSCF), Integral transformation, iterative Davidson diago-
nalization of a MRSDCI wave function, one- and two-particle density matrices,
one-electron expectation and some response properties, MCSCF- and MRSDCI
analytical gradients.

The COLUMBUS program runs on a large variety of computers including
numerous Unix-based workstations, VAX/VMS minicomputers, IBM main-
frames and compatibles, minisupercomputers (including the Alliant FX/8 and
FX/2800, Convex C1 and C2, and FPS 500EA), and Cray supercomputers
(X-MP, Y-MP, and Cray-2). The individual codes are written and maintained in
such a way that porting of the codes to new machines is relatively straight-
forward. The entire sequential program system (without the gradient part at the
time of this writing), including source code, installation scripts, documentation,
and sample calculations is available using anonymous FTP from the server
ftp.tcg.anl.gov.

The entire electronic structure calculation is performed in a series of steps.
The first steps consist of optimization of molecular orbitals (MOs) using the SCF
or MCSCF method depending on the case and the complexity of the problem.
These MOs are used to define the configuration state functions (CSFs) for the
final large-scale CI wave function. This latter wave function is generated from a
set of reference CSFs which determine the internal orbital space by allowing
single and double excitations into the space of virtual (or external) orbitals. In
the approach chosen in the COLUMBUS system always all excitations into the
given external space are taken into account thereby allowing the formulation of
the Davidson diagonalization (see below) to be broken down into individual
dense matrix- and vector-type operations of the dimension of the orbital basis.
The structure and numbering scheme of the CSFs is established in the GUGA
approach by a distinct row table (DRT) which is constructed in program
CIDRT. Next, the internal coupling coefficients for the subsequent diagonaliza-
tion step are calculated in program CIUFT and stored in a file called the formula
tape. After transforming the AO integrals into the MO basis and sorting them in
an appropriate way the iterative diagonalization of the matrix representation of
the hamiltonian operator is done in program CIUDG. For accurate, large-scale,
wave function expansions, this is the computationally most demanding step.
MRSDCI expansions of 1-10 million are now becoming routine with the
COLUMBUS program system.

Program CIUDG uses the iterative Davidson diagonalization method [13] to
determine the appropriate eigenvectors and eigenvalues of the hamiltonian
matrix. Most of the effort in large-scale calculations within each of these
iterations is the computation of a matrix-vector product of the hamiltonian
matrix and a trial vector. These vectors will be called v (trial vector) and w
(resulting product vector) in the subsequent sections. The subroutine governing
the computation of the product is called MULT. The inherent sparseness of the
hamiltonian matrix may be exploited by using the "direct-CI" procedure [14] to
compute this matrix-vector product. This involves computing the matrix-vector

492 M. Schüler et al.

product "directly" from the electron repulsi0n integrals, without explicitly
constructing or storing the hamiltonian matrix elements. The advantage of this
procedure may be appreciated by noting that for a MRSDCI wave function

Nor b hamiltonian matrix expansion with orbital basis of size Norb, there are roughly 8
elements total, only 6 ~Norb of which are non-zero, and these non-zero elements
are constructed from only 4 Not b individual electron repulsion integrals. Since the

6 4 computational effort scales as Nor b while the underlying data scales only as Norb,
the direct MRSDCI method possesses a quite favorable "surface-to-volume" ratio
when comparing the amount of input and output data to the numerical work.

Because of the structure of the MRSDCI wave function as defined above, the
overall matrix-vector product involving a very large hamiltonian matrix may be
cast into a form [5, 15-17] where most of the operations are of dense matrix-
matrix and matrix-vector type where the dimensions of these matrices and vectors
are of the length of Norb. In the COLUMBUS program these matrix and vector
operations are performed via dense-matrix product kernels (e.g. BLAS(3) routines
[18]) which have proved so efficient on vector and scalar-pipelined machines
during the past decade. In the coarse-grain parallelization of the COLUMBUS
program described in this paper these efficient kernels are still exploited. It is
anticipated that this feature will remain quite beneficial also on most of the
forseeable parallel computers since the individual nodes can take advantage of
these same computational kernels.

During the iterative Davidson procedure the v and w vectors are broken
into segments. Subroutine MULT loops over pairs of segments of v and w.
Thus, only segment pairs need to be kept in central memory, allowing to run
calculations with sizes of CI expansions much larger than physical memory.
Originally, this feature had been implemented into the sequential code for
compatibility reasons in order to make larger CI calculations also possible on
machines with rather small central memory. However, as will be demonstrated
later, this facility of the program proved to be extremely useful for the purpose
of parallelization.

1.20bjectives

Our objectives separate into short- and long-term goals. In the short term we wish
to be able to exploit the resources offered by few processor shared-memory
machines (e.g. Alliant FX/2800, Cray Y-MP or Convex C2/C3), networks of
workstations, or small configurations of distributed-memory machines such as the
Intel iPSC/860. As already mentioned earlier we chose the COLUMBUS program
system to start with because it is very well structured and portable to many
different machines. In order to achieve our first goal only relatively few structural
changes are necessary:

1. A coarse-grain decomposition of the program plus load balancing.

2. Addressing the most gross scaling problems which can be determined from
knowledge of the algorithm and empirically without a detailed performance model.

3. Ensuring that I/O communication and memory requirements do not scale
excessively with the number of processes.

The long-term goal is to arrive at an MRSDCI program that will scale to
massively parallel machines with hundreds of processors. The program that
realizes our short-term objectives will have only its most significant bottlenecks

Parallel implementation of the COLUMBUS MRSDCI 493

removed and will require only localized modifications of the sequential code. A
massively parallel implementation will require construction of a detailed perfor-
mance model and exploitation of parallelism at all levels of the code, necessitat-
ing possibly extensive restructuring and rewriting.

In our present work we concentrated on the most important computational
step, i.e. the hamiltonian matrix times trial vector product in program CIU D G
of the COLUMBUS program package (see Sect. 1.1). In the meantime a parallel
version of the present AO integral program ARGOS [19] has been obtained as
well [20]. But it is clear from the beginning that all the other steps mentioned in
Sect. 1.1 must be parallelized eventually.

Our decision of how actually to proceed depended on a few other more general
considerations which are worth mentioning. First of all, portability is a very
important issue. Since the parallelization of the complete COLUMBUS package
is a major undertaking it is, of course, extremely desirable that the resulting code
operates on as many different machines with a minimum of changes necessary.
Since the sequential COLUMBUS program is very weil structured and portability
is very well taken care of there [3] we had good reasons to expect that we could
make good use of these features also here. Software for parallel computers is still
expected to undergo basic changes and developments in the future. Thus, we tried
to set up out strategy in a way that it is not coupled too strongly to a certain
product, and that later changes could be done without too much difficulty. From
that point of view (and also for other reasons discussed below) parallelization via
compiler is not advisable. Explicit message passing is much more suited for our
purpose since it is very simple in its functionality and makes the underlying
parallel structures of the programs clear. We do not expect that this is the final
way to approach parallelism hut, from a pragmatic point of view, this procedure
will give us sufficient flexibility for the future with a minimum amount of effort
and acceptable performance improvements today.

2 Parallel algorithm

2.I General considerations

As discussed in the Introduction, the sparse matrix-vector product of the
hamiltonian matrix and a trial vector is the most time consuming step for large-scale
MRSDCI wave functions. Thus we concentrated in our first efforts to parallelize
the COLUMBUS program on that section of the code. This sparse matrix-vector
product is needed during the iterative Davidson diagonalization and is part of the
program CIUDG. Its overall loop structure is characterized in Fig. 1.

loop over pairs of CI vector segments

loop over types of indices (0-4 internal)

loop over internal indices

loop over forrnulas for a given set of

internal orbitals

loop over upper walks

dense matrix kernels

Fig. 1. Loop structure for the multi-
plication of the hamiltonian matrix
and a trial vector as performed in
subroutine MULT()

494 M. Schüler et al.

The innermost part consists of the dense-matrix kernels mentioned at the end
of Sect. 1.1. In a very fundamental way the COLUMBUS CI code and most
other modern MRSDCI codes have been exploiting fine grain parallelism via
these kernels for many years. Large calculations are reported to sustain over
230 MFLOPS on a single Cray Y-MP cpu [21]. However, the dimension of the
matrices involved is usually the number of external orbitals in a symmetry block,
which is O(10-100). This is insufficient for efficient distribution on all except the
most closely coupled processors (e.g. on 6 processors of an Alliant FX/2800 a
100 x 100 matrix multiply runs at 156 MFLOPS, a speedup 4.5 relative to the
single processor timing). Thus one has to look for coarser granularity at which
parallelization should take place.

The DO loops immediately surrounding the low-level matrix operations (see
Fig. 1) are over rearrangements of the electrons in the internal orbitals which
share the same matrix element structure. In the terminology of G U G A these are
the number of upper walks starting from the loop head of an individual loop.
Parallelization of this loop would be straightforward as contributions are made
to disjoint sections of the result vector. However, there is still insufficient
granularity for a distributed memory environment, and worse, the number of
upper walks is empirically found to vary greatly, sometimes averaging only 1-3.

Rising further up the nested loop structure we pass through code that is
driving the computation for each individual formula of the formula tape,
through loops over internal MO indices and over the type of integrals being
processed (0 - 4 internal indices). There is rauch opportunity for parallelism hefe,
but the structure of the code is quite complex. In addition, the flow of control
and data, and the distribution of time, are very sensitive to the nature of the
reference space and the DRT.

The outermost loop in the matrix-vector product routine runs over pairs of
segments of the trial (v) and result (w) vectors. This loop is nearly perfect for our
purpose.

• It provides the most coarse-grain decomposition possible.

• In a modestly parallel environment we can largely ignore the complexity of the
control flow beneath.

• Each process only needs to hold at most four vector segments (two for each v
and w) and thus the memory requirements do not rise excessively with the number
of processors.

• The number of tasks is actually proportional to the square of the number of
segments, thus it is possible to have a sufficiently large number of tasks to make
load balancing effective.

2.2 Structure of the parallel program

As discussed in Sect. 1.2, we use a message-passing model for parallelization. The
actual implementation is performed via the portable programming toolkit
T C G M S G developped by one of us (RJH) [22]. The toolkit is available by
anonymous FTP from ftp.tcg.anl.gov. TCGMS G supplies a set of Fortran and C
callable library routines by which the message passing can be introduced into the
application program code. A Single Program Multiple Data (SPMD) approach
is used. T C G M S G is available on a large variety of shared memory and
distributed-memory machines.

Parallel implementation of the COLUMBUS MRSDCI 495

M A I N

CALL DIAGON ()

END MAIN

SUBROUTINE DIAGON ()

D O I T E R = 1 , N I T E R ! Davidsonlypesubspaceiteration

CALL MULT ()

ENDDO ITER

END DIAGON

SUBROUTINE MULT ()

DO SEGI = 1 , NSEG

READ WSEGI , VSÆG1

DO SEG2 = 1 , SEGI

READ WSEG2 , VSEU2

U P D A T E Ws£G1 , WSEG2 ! Contributions from ltsEGl,SF.G2and

! Hse~2~eG~ hamiltonian blocks

WRITE wse62

ENDDO SEG2

WRITE WSEGI

ENDDO SEGI

END MULT

Fig. 2. Structure of the sequential program CIUDG

In Figs. 2 and 3 the basic structures of the sequential and the parallel
C IUDG programs are presented. For the present purposes, the most important
feature in the sequential code (Fig. 2) are the loops over segment pairs of the v
and w vectors. Additional logic (not shown in the figure) is required to handle
the SEG1 = SEG2 cases and the case SEG1 = 1, which refers, in our segmenta-
tion structure, to CSFs with zero and one external orbital occupancies. In the
parallel case (see Fig. 3) all processes start execution at the top of the program.
After some initialization and other preparatory work, including setting up a
starting guess for the trial vector v, all processes enter subroutine DIAGON()
where the iterative Davidson diagonalization step is performed. Before calling
subroutine MULT() (multiplication of the hamiltonian matrix and the trial
vectors) process 0 broadcasts a flag telling all other processes to continue with
their work. In subroutine MULT() we find the identical loop structure over
segments as in the sequential case (Fig. 2). However, in addition, the decision is
made which process has to update a given segment pair. This is done by a load
balancing algorithm. SEG12 effectively maps the double loop over SEG1 and
SEG2 into a single loop index. The function nxtväl() assigns the next free index
value from a shared counter to the variable NEXT for each individual process.
SEG12 is incremented until the value of NEXT is reached in which case the
updating of that particular segment pair is done. Each process owns its local
copy of the w vector but shares the trial v vector with the other processes.

When the loops over segment pairs are finished the partial results for the w
vector computed by the individual processes are collected by a global sum
operation at process 0. In subroutine DIAGON() only process 0 is allowed to
proceed further and do the remaining computational steps of the Davidson
iteration. The other processes remain in a waiting position at the broadcast

496 M. Schüler et al.

LOOP:

MAIN

initialize processes

NPROC = nnodes() !mtalnamberofprocesses

ME = n o d e i d () ! numberofthenode

CALL DIAGON ()

FLAG = ISTOP

broadcast FLAG from process 0 to other processes

CALL pend () ! close process 0

END MAIN

SUBROUTINE DIAGON ()

DO ITER = 1 , NITER ! Davidson type subspace iteration

FLAG = IRUN

DO ! loop forever

broadcast FLAG from process 0 to the other processes

IF (FLAG .EQ. ISTOP) CALL pend() l alldone

CALL MULT ()

IF (ME .EQ. 0) exit LOOP

ENDDO LOOP

• • • : R e s t ofDavidson iteration
ENDDO ITER

END DIAGON

SUBROUTINE MULT ()

SEGI2 = 0

NEXT = nxtval(NPROC)

:ge t inder from pool of available indices (load balancing)

DO SEGI = 1 , NSEG

DO SEG2 = 1 , SEGI

SEGI2 = SEGI2 + 1

IF (NEXT .EQ. SEGI2) THEN

READ V SEG1, W$£GI(ME) ! only i f not already in core

READ VsE~2, WSEG2(ME)

UPDATE WSEGI(ME) , WSEG2(ME)

! Contn'butions from HsÆal,•£G 2 and Hsea2.~eo 1 hamiltonian blocks

WRITE WsEa2(ME) tO local file

ger NEXT from pool of available indices

' load balancing

ENDIF

ENDDO SEG2

if update done on segment SEGI WRITE WSF.G I (ME) to local

file

ENDDO SEGI

global surn of w to processor 0

END MULT

Fig. 3. Structure of the
parallel program CIUDG

statement ready to enter MULT() for the next time. In case that the Davidson
iterations are not finished yet process 0 broadcasts a message to the other
processes to continue (FLAG = IRUN). Otherwise process 0 leaves subroutine
DIAGON() and FLAG is set to ISTOP. Broadcasting FLAG now by process
0 causes all other processes to quit. Finally process 0 is closed as well.

As has already been mentioned above, presently, several files are assumed
shared between processes. File organization and access mode in subroutine

Parallel implementation of the COLUMBUS MRSDCI 497

Proce¢s 0 1 N P R O C - 1

Fig. 4. Data flow in sub-
routine MULT()

MULT() is shown in Fig. 4. During construction of the matrix-vector product,
segments of the CI vector are read by all processes from a single shared file. This
file is updated by process zero during the Davidson diagonalization procedure.
In order to ensure that all write buffers are flushed and that read buffers are
invalidated it has been found necessary to close and re-open this file in all
processes immediately prior to the global barrier implied by the broadcast of
F L A G (in subroutine M U L T ()) described above.

The implementation of the procedures just described by subroutine calls to
the TCGMSG library is straightforward. Basically, the modifications in subrou-
tine MULT() were the only ones worthwhile mentioning with one important
exception. In the original sequential program the segment structure of the CI
vector is determined for a given amount of core memory so as to minimize the
number of segments. In the sequential case, there is no advantage to achieve a
balance of the size of different segments. Typically, the maximum number of
segments is 3 to 5; in most applications enough memory is available to hold the
complete v and w vectors in core. In the case of the parallel program the
situation is different. A larger number of segments is required (typically 20 to 50)
in order to balance the work load over processes. Unfortunately, the sequential
program showed in such cases (for which it was not designed) an approximately
quadratic increase of computer time with the number of segments (see Fig. 5 and
Sect. 3.1). By analyzing the sequenfial program code we found the reason for this
increase in the processing of the formula tape. Since only one formula tape
containing the information for all CSFs was constructed, for each segment pair,
the complete file had to be read, the information for each formula had to be
unpacked and checked whether it contributed to the particular segment pair.
Thus, especially in multireference cases for which the formula tape is very long,
the amount of effort to extract useful information for one segment pair was very
small compared to the total amount of work of analyzing the entire formula
tape. There were two ways out of that dilemma. One was to sort and split the
formula tape into several files. This procedure had the disadvantage that the
structure of the formula tape depended on the segmentation of the CI vector and
had to be changed with changing segmentation. The amount of I/O for reading
the formula tape would still have remained appreciable. The solution adopted

498 M. Schüler et al.

CPU time (sec.)

400

300

200

100

formula tape

alculat ion of loops

number of segments

Fig. 5. Comparison of
timings (for one com-
plete CI iteration, Cray
Y-MP) for the formula
tape case vs. direct cal-
culation of the internal
contribution to the CI
matrix elements. The
C»-pVTZ test case
was used

was to abandon the formula tape completely and to recalculate, for each segment
pair, specifically the necessary formulas on the fly. In that way the respective I /O
was eliminated completely at the cost of the cpu time required to calculate the
formulas directly. This cost for the formula generation only depends on the
structure of the internal space. Except for overlapping cases between segment
boundaries, work can be organized so that each formula is calculated only once.
Thus, the computational work connected with the formula calculation would be
more or less independent of the segmentation scheme. However, since some
overhead with setting up the DO loops in the D R T and validating the internal
walks on the D R T was necessary we obtained linear dependence on the number
of segments. This is a great progress compared to the previous quadratic
behavior. Detailed timings will be given in Sect. 3.1.

3 Performance

The parallel C I U D G program is currently running on a rather wide selection of
machines: Sun workstations, Personal Iris, Convex C2, Cray Y-MP, Alliant
FX/2800 and Intel iPSC/860. Adaption of the program to other machines, like
the IBM RS/6000 series or the Intel Touchstone Delta will follow in the near
future. In this section we present timings for three typical test cases in order to
demonstrate the efficiency but also the bottlenecks of our program (for an
evaluation of these timings see also authors ' note at the end of the article).

These test examples were set up in the following way: all calculations were
performed for the electronic ground state of the CH 3 radical. A CAS (complete
active space) with 7 valence orbitals was chosen for the determination of the
reference configurations. Within that configuration space MCSCF calculations
were performed. For the CI expansion all configurations belonging to the CAS
(without application of symmetry restrictions) were used to construct all single
and double excitations from the valence orbitals into the full virtual orbital

Parallel implementation of the COLUMBUS MRSDCI 499

space. The K-shell orbital was frozen. For more details on the calculations see
Ref. [23]. Depending on the basis set and the geometry 3 different cases were
finally treated:

(a) C»-p VDZ: The molecular geometry was D3h symmetry (Rci-i = 2.039 bohr).
Only C2~ symmetry was utilized in our program. The basis set was of polarized-
valence double-zeta (ec-pVDZ) quality and taken from the compilation by
Dunning [24]. It consisted of a 9s4p ld Gaussian basis on carbon contracted to
[3,2,1] using general contraction techniques. For hydrogen a 4slp basis con-
tracted to [2,1] was used. The 29 orbitals were distributed over the four
irreducible representations of C2v a s al 14, bi 5, b 2 8 and a2 2. The CAS consisted
of 2 - 5 al, 1-2 b2 and 1 bi orbitals which gave 188 reference configurations. The
dimension of the final CI expansion was 70,254.

(b) C2~-p VTZ: This case is identical to the previous one except that the AO
basis was of polarized-valence triple-zeta (ce-pVTZ) quality [24] (C: lOs5p2dlf
[4,3,2,1], H: 5s2pld [3,2,1]). The 72 basis functions were distributed over the
irreducible representations as: al 30, b~ 14, b2 20, a2 8. The size of the CI
expansion was 624,334 CSFs.

(c) C~-p VTZ: A distorted geometry of C~ symmetry and the same pVTZ basis
as in case (b) was chosen. The same CAS (7 active valence space orbitals) as
above gave rise to 784 reference configurations which resulted in a CI expansion
of 2,528,400 CSF.

3.1 Efficiency of the segmentation scheme

The dependence of computer time on the segmentation of the v and w vectors is
of crucial importance since the distribution of work to the individual processor
is done via segment pairs, and load balancing requires that the size of the
segments is not too large. Typically, we used 20 to 50 segments. Ideally, the total
execution time should remain unaffected by the segmentation. That this was not
the case for our original sequential program has already been discussed in Sect.
2.2.

In addition, the I/O requirements in connection with the segmentation
scheme have to be considered as well. As discussed previously, the multiplication
H " v is driven by the four indices of the two-electron integrals. There are five
cases which are classified according to the number of external indices as 4-, 3-,
2-, 1- and 0-external. In the 4-, 3- and 1-external cases the updating of w can be
achieved by passing once through all segments. In the remaining 2- and 0-exter-
nal cases each segment pair has to be considered individually. Thus, the 4-, 3-
and 1-external integrals have to be read from disk Nseg/2 times and the 2- and
0-external integrals Nseg(Nseg - 1)/2 times where Nseg is the number of segments.
The factor of one half for the first part of integrals comes from the fact that in
this case the passage through the segment pairs can be organized in a way that
two consecutive segments are combined thus reducing the reading of the 4-, 3-
and 1-external integrals by approximately a factor of two. Moreover, the v vector
segments have to be read from disk and the w vector segments have to be read
from and written to disk. The amount of data to be transferred in that case is 3/2
(N~~g -- 1)Nci in working precision units.

The efficiency of the segmentation scheme depends on other factors as well.
The direct calculation of the formula tape information is basically scalar whereas

500 M. Schüler et al.

Table 1. Timings for the sequential CIUDG program in dependence on the segmentation of the CI
vector a,b

4-ext. 3-ext. 2-ext. 1-ext. 0-ext. H" v Total

Cray Y-MP
Czv -p VD Z

no segmentation 0.77 1.9 13.0 16.2 4.4 36.2 36.3
30 segments 0.77 2.1 27.4 16.7 23.4 70.6 70.7

C2o-pVrZ
no segmentation 10.3 9.1 32.4 18.4 4.8 75.0 (75.3) 75.3 (75.9)
30 segments 10.3 9.4 52.1 18.8 23.4 114.7 (117.6) 115.1 (118.2)

C a -p VTZ
no segmentation 93.9 46.9 229.5 72.6 25.7 468.6 (469.2) 470.0 (471.6)
30 segments 94.0 47.8 265.2 73.1 87.6 569.8 (580.6) 571.2 (583.1)

Alliant FX/2800
C»-pVDZ

no segmentafion 6.7 20.9 69.1 56.5 10.9 164.6 166.7
30 segments 6.9 21.3 132.1 57.7 46.4 271.4 273.6

C2v-pVTZ
no segmentafion 367.1 354.4 568.5 139.1 52 .7 1485.3 1508.2
30 segments 374.9 357.7 904.6 140.2 88.1 1909.0 1932.2

Convex C220
C2~-pVDZ

no segmentation 4.9 12.4 49.0 52.4 16.0 134.7 135.3
30 segments 4.9 12.9 127.0 54.2 71.8 273.1 273.8

C2~-pVTZ
no segmentation 136.6 127,4 234.0 88.1 31.2 617.6 623.7
30 segments 137.4 130.3 452.3 89.5 88.9 904,4 910.5

a Timings in cpu seconds for one Davidson iteration (wall clock times are given in parentheses)
b For the definition of the individual contributions see the text

for the dense matr ix operat ions vector operat ions can be used. Also, I /O is
accounted for differently on different machines. Thus, in order to give an
overview over the performance of the segmentat ion we consider it useful to
discuss timings on a series of computers. The influence of all these individual
factors can already be investigated at a single processor level. Thus, for the
t imings described in this section we used for simplicity our sequential p rogram
extended by the possibility of direct calculat ion of the formula tape informat ion .
Since the p rogram code for upda t ing one segment pair of w is identical in the
sequential and the parallel p rogram the conclusion drawn here fully pertains to
the calculations with the parallel p rogram to be described in the next section.

In Table 1 timings for calculations with and without segmentat ion of v and
w are compared for several computers. In the table the total time for one
Davidson i terat ion is split up into its individual components according to the
classification of the two-electron integral indices as explained above. As to be
expected, segmentat ion has by far the largest effect for the 2- and 0-external cases
which depend - as explained above - on cont r ibut ions from each pair of seg-
ments.

In case of the Cray Y - M P these times were further b roken down by means
of Profiling [25] (see Table 2). In this table the total time for one i terat ion is

Parallel implementation of the COLUMBUS MRSDCI

Table 2. Individual timings on the Cray Y-MP for the sequential CIUDG program a,b

501

C2v -p VD Z C2~ -p VTZ C I-p VTZ

no segm. 30 segm. no segm. 30 segm. no segm. 30 segm.

formula calc.
3-ext. 0.1 0.1 0.1 0.1 0.1 0.1
2-ext. 2.5 13.0 2.3 11.6 3.1 13.5
1-ext. 9.3 9.8 9.2 9.7 9.9 9.6
O-ext. 4.2 21.5 4.0 21.4 23.5 80.0

formula tp. (total) 16.1 (39%) 44.4 (60%) 15.6 (19%) 42.8 (35%) 36.6 (7%) 103.2 (17%)
matr. multipl. 25.7 (61%) 29.7 (40%) 64.8 (81%) 78.4 (65%) 479.5 (93%) 501.4 (83%)
plus overhead

total 41.8 74.1 80.4 121.2 516.1 604.6

a Timings in cpu seconds for one Davidson iteration
b For the definition of the individual contributions see the text

broken down into contributions due to the formula calculation, the dense matrix
routines plus overhead including logic and cpu time assigned to the I/O. The
charging of cpu time for I/O is almost negligible here. The three examples are
arranged in increasing work done in the external space. This is achieved by either
increasing the basis set (D Z --* T Z) or by reducing the symmetry (C» --* C1). The
generation of the formula data is independent of the external orbital space. This
fact is nicely reflected in the timings of Table 2. The timings for the 3- and
1-external cases are practically independent of segmentation whereas in the 2-
and 0-external cases an increase in computer time can be observed. However,
with one exception, timings remain constant for a given segmentation which
means that with increasing basis size (keeping the internal space unchanged) the
relative importance of the formula computat ion is significantly reduced. Only in
the case of the 0-external (all-internal) indices the time for the formula calcula-
tion increases when going f rom C2v to C1 symmetry because this is the only case
where it is possible to take symmetry into account. The formula calculation
amounts to 60% of the total time for one iteration in the C2v-pVDZ case.
However, this example has been included for tesing purposes only and contains
a rather small external orbital space. It is not characteristic for high-level
calculations. The proport ion of the formula calculation is significantly reduced
for the larger basis sets. It could have been still further reduced if the work for
the external space had been increased by increasing the basis set and not by
reducing the symmetry. Figure 5 shows a comparison of timings for the old
program where the complete formula tape was read for each segment pair with
those obtained with the present scheme. The advantages of our new procedure
are obvious. One can see that in this latter case computer time increases linear
with N~eg. This is an acceptable behavior since the number of tasks which can be
produced in that way increases quadratically with Nseg- One should also mention
here that the CAS reference space is a very demanding one and that for more
restricted M R cases the importance of the formula generation will decrease
significantly. The timings for the unsegmented calculations show that the recalcu-
lation of the formulas is also an interesting alternative for the sequential

502 M. Schüler et al.

CPU t ime (He.)

14 ¸

12

CPU U r n e (s e c .)

/ /
/

/
/

/ / / Zx 1300
/ /

/ / /

1100 / /

8 / / i /

8 H" v correc ted ~ / 900

~ / ~ ~ . . 4 - ,3 - ,>~ . i~t~«,ùl, 700

a" / .~""-:"~""
~ , - - - - " 2 ~ ~-- 2 - , O - e ~ d . . Integrals

0 I I [I I I I I / 0 0 0
0 6 10 lG 20 25 30 35 40 45 510 55

number of segments

Fig. 6. Timings for read-
ing and writing the two-
electron integrals and the v
and w vectors (left coordi-
nate axis) and for H" v re-
duced by the cpu time
attributed to I/O (right co-
ordinate axis). The data
were obtained on a Con-
vex C2 and the C2~-pVTZ
test case was used

program itself. The break-even point between the versions öf reading the
complete formula (old) and recalculating only what is n~eded (new) is situated in
all cases investigated at rather small segment numbers (6 to 7).

The timings for Convex and Alliant (see Table 1) show a dependence on
segmentation which is very similar to those for the Cray. Again, the 2- and
0-external cases show a significant increase in computer time from the unseg-
mented to the 30 segment case. Contrary to the Cray data transfer from and to
disk is also reflected in the cpu timings. With the help of a simple test program
the cpu time per MB transferred data was determined and the actual cpu times
were calculated from the known amount of data transferred in each iteration
cycle. In Fig. 6 the relative importance of individual contributions is depicted for
the Convex C2. Timings for the 4-, 3- and 1-external integrals and the » and w
vectors depend linearily on the number of segments. The 2- and 0-external
integral file is much smaller than the 4-, 3- and 1-external file. However, since
this file is read Nseg(Nseg- 1)/2 times (as opposed to Nseg/2 times for the other
part of the integral file) it soon becomes a prominent factor and finally
dominates the I/O. Data transfer for the v and w vectors turns out to be a very
important factor as well. The cpu time for the hamiltonian matrix times vector
product (excluding the cpu time for the I/O) behaves almost linearily with
increasing number of segments. A similar situation is also found in case of the
Alliant.

3.2 The parallel program

After having investigated the characteristic behavior of the sequential program in
some detail we are now ready to discuss the performance of the parallel program.
We concentrate on two questions: how well does our load balancing scheme
work and what speedup can actually be achieved? An unambiguous answer can
only be obtained on dedicated machines without any other jobs interfering. In

Parallel implementation of the COLUMBUS MRSDCI 503

the following, we will discuss such results obtained on an eight processor Cray
Y-MP and an Alliant FX/2800 by comparing cpu and wall clock times. For the
Convex C2 for which a dedicated system was not available to us at present. In
addition to the just mentioned shared memory machines, we also will present
results for the iPSC/860.

3.2.1 Cray Y-MP. Table 3 shows timings (cpu- and wall clock times) obtained
on a dedicated eight processor Cray Y-MP for our two larger test cases. The
results are overall very satisfactory. Comparison of cpu and wall clock times (no
given in the table) for the individual steps of H ' v shows very small time
differences which means that I/O is very well taken care of (standard Fortran I/O
routines have been used throughout except for the 4- and 3-external two-electron
integral files for which asynchronous AQREAD [26] routines were employed).

Table 3. Timings for the parallel C IUDG program on a dedicated 8 processor Cray Y-MP a,b

Proc. 4-ext. 3-ext. 2-ext. 1-ext. 0-ext. H . v Total
n o .

cpu cpu cpu cpu cpu cpu wall cl. cpu wall cl.

C2v -13 V T Z
1 proc.

4 procs.

8 procs.

C1- p V T Z
1 proc.

4 procs.

8 procs.

0 10.4 9.4 51.9 18.9 23.1 114.5 118.4 114.9 119.2

0 3.6 3.6 11.4 5.7 4.8 29.3 30.5 29.7 32.6
1 1.5 1.1 17.2 2.0 6.9 29.0 30.5
2 3.2 2.7 9.5 8.2 5.1 28.9 30.5
3 2.1 2.0 13.7 3.0 6.3 27.3 30.5

0 1.4 1.9 4.8 2.8 2.1 13.1 16.6 13.6 20.5
1 0.7 0.5 7.8 0.8 3.4 13.4 16.6
2 1.5 1.1 3.5 5.7 2.7 14.6 16.6
3 0.7 0.6 8.5 0.9 3.7 14.5 16.6
4 1.8 1.6 6.1 2.6 2.5 14.6 16.6
5 1.5 1.3 7.4 2.3 3.1 15.7 16.5
6 1.4 1.1 6.9 1.8 2.5 13.8 16.6
7 1.5 1.3 7.3 2.1 3.2 15.5 16.5

0 94.1 47.7 264.8 73.3 86.4 568.4 578.8 570.0 581.9

0 22.8 10.4 74.8 15.7 18.2 1 4 2 . 5 149.9 144.2 158.3
1 26.1 16.5 59.5 22.7 20.0 145.4 149.9
2 19.4 9.5 71.5 13.9 20.6 135.5 149.9
3 26.3 11.6 59.6 21.3 27.8 147.1 149.9

0 13.3 7.7 18.2 14.8 14.0 68.2 80.9 70.0 98.0
1 13.1 5.3 34.3 8.0 9.6 70.6 80.9
2 16.4 8.3 28.1 11.6 8.1 72.8 80.9
3 6.5 2.8 44.2 4.1 13.7 71.8 80.9
4 6.6 3.5 37.7 5.2 11.6 65.0 80.9
5 13.1 8.8 26.2 11.6 8.8 68.9 80.9
6 13.0 4.4 40.8 7.4 11.4 77.4 80.9
7 13.1 7.6 36.6 11.3 9.8 78.8 80.9

"Timings in cpu and wall clock seconds for one Davidson iteration with 30 segments
b For the definition of the individual contributions see the text

504 M. Schüler et al.

The total timings for the H ' v step are an indication of how weil our load
balancing procedure works. The cpu times are a measure of the work done by
each process. The wall clock times are identical for all processes because of the
necessary synchronization after finishing the H " v calculation. The average cpu
efficiency as defined as average cpu time for H " v divided by the wall clock time
is 97%, 94% and 87% for the 1, 4 and 8 process calculations in the C2~-p VTZ
case and 98%, 95% and 89% in the CI-p VTZ case. The total timings (last two
columns in Table 3) include the global sum for the w vector and the Davidson
subspace manipulation which is done by process zero only. The cpu time for this
step constitutes only a minor amount whereas the wall clock time increases
significantly with the number of processors. This is possibly due to a non-optimal
installation of the global sum operation. The speedups for the H • v step (wall
clock time for the single-processor calculation divided by the respective wall
clock time for the multiple-processor calculation) are:

C2v-p VTZ 3.9 (4 processes) and 7.1 (8 processes)

and

CI-p VTZ 3.9 (4 processes) and 7.2 (8 processes).

The speedups based on timings for one complete iteration are reduced to 3.7/5.8
(C2v-p VTZ) and 3.7/5.9 (CI-p VTZ) because of the deterioration of the perfor-
mance as just mentioned. MFLOPS rates have been determined by the hardware
processor monitor (hpm [25]). Since in our test runs on the dedicated computer
we had performed only one full iteration the overhead from initial (Bk iteration
[27]) and final (Davidson correction [28]) steps deteriorate the results in an
unbalanced way. Therefore we tried to correct for these influences and estimated
the true MFLOPS rate in the Cl-p VTZ case as follows: for a single process on
the dedicated computer one Davidson iteration including the aforementioned
overhead gave 144 MFLOPS per cpu second and 138 M F L O P per wall clock
second. Since we obtain a speedup of a factor of 7.2 for the H " v step in case of
eight processes we have achieved about 990 MFLOPS for that part of the
program. Since the overall increase for the complete iteration is (for the moment)
only a factor of 5.9 the overall speed is 814 MFLOPS. In calculating relative
speedups we have taken as reference so far a sequential calculation with
segmentation. The numbers obtained in this way give a realistic picture of the
efficiency with which the individual processors are utilized. However, from the
point of view of throughput one has of course to compare with the most efficient
sequential case which is the unsegmented one. I f one takes the wall clock times
for the unsegmented calculation as given in Table 1 the speedup for the 8
processor case (G-P VTZ) is reduced to 4.8.

3.2.2 Alliant FX/2800 and Convex C2. Results for Alliant and Convex are
presented in Table 4. For the Alliant a dedicated computer was available. Thus,
cpu and wall clock times are given. Test runs on the Convex could only be
performed under heavy load. Therefore, we tabulate for Convex cpu times only.

The distribution of cpu times over the individual processes shows again that
load balancing works quite well. However, in case of the Alliant we encountered
orte special problem. For all other machines investigated the sum of the cpu
times for a given segmentation was practically independent of the number of
processes. As Table 4 shows this is not the case for the Alliant FX/2800. The
total cpu time (sum over all processes) for H ' v inereases from 268.8 sec (1
process) via 279.3 sec (4 processes) to 390.1 sec (8 processes). Thus, even though

Parallel implementation of the COLUMBUS MRSDCI 505

Table 4. Timings for the parallel CIUDG prograrn on a dedicated Alliant FX/2800 and a Convex C220 a'b

Proc. 4-ext. 3-ext. 2-ext. 1-ext. 0-ext. H - v Total
n o ,

cpu ClOu cpu cpu cpu cpu wall cl. cpu wall cl.

Alliant FX/2800
C2v-pVDZ
(30 segm.)

1 proc. 0 5.3 17.4 129.1 61.1 46.9 268.8 271.0 271.8

4 procs. 0 1.2 3.9 39.6 12.2 13.2 75.6 77.0 79.9
1 2.2 7.5 28.5 22.4 8.9 74.0 77.0
2 0.8 2.2 41.8 6.8 14.6 71.9 77.0
3 1.6 4.8 28.4 23.8 12.4 75.8 77.0

8 procs. 0 0.5 2.3 23.8 6.6 6.9 46.6 52.0 52.6
1 0.5 1.7 25.7 5.0 7.8 47.1 52.0
2 0.6 1.5 25.3 4.2 8.5 46.5 52.0
3 1.4 4.8 18.6 14.1 5.0 49.7 52.0
4 0.9 4.3 22.7 11.2 6.7 51.6 52.0
5 0.9 2.1 24.1 7.4 7.1 47.8 52.0
6 1.4 4.8 19.0 14.7 5.8 51.5 52.0
7 0.7 1.9 17.8 15.9 8.5 49.3 52.0

Convex C220
C2~-pVTZ

1 proc. 0 146.5 138.1 458.6 88.2 83.9 921.4 928.3

4 procs. 0 34.8 29.4 126.3 16.6 20.8 229.9
1 30.8 31.9 120.6 16.6 22.4 224.1
2 31.3 25.7 129.4 26.6 25.9 240.6
3 51.5 53.5 89.0 29.6 15.3 240.2

274.0

81.0

60.0

"Timings in cpu and wall clock seconds for one Davidson iteration with 30 segments
b For the definition of the individual contributions see the text

paralielism is very weil established the final speedups are poor because of the
increase of the total cpu time. F r o m the behavior of C I U D G on all other
computers we were sure that this increase in cpu time could no t come f rom our
code directly. Tests with simple benchmark programs finally showed that the I /O
performed in parallel was responsible for that artificial increase of the cpu time.
Such a behavior was not observed on other systems. Since this problem is clearly
related to the operat ing system we do not see any possibility at the m o m e n t to
improve the si tuation.

3.2.3 Intel iPSC/860. In contras t to the previously described shared memory
machines the iPSC is a d is t r ibuted-memory machine. However, these architec-
tural differences are hidden by T C G M S G . In the way we had designed the
parallel C I U D G program it was possible to port C I U D G to the iPSC without
changing a single line of code concerning parallelization. W h a t had to be
changed was l inking the appropr ia te l ibrary for BLAS rout ines and routines
concerning I /O which is managed via the Concur ren t File System [29]. Only wall
clock times are available. As T C G M S G works at the m o m e n t one node is
dedicated to the nextval() server which is responsible for load balancing. This

506

Table 5. Timings for the parallel CIUDG program on the iPSC/860 a,b,c

M. Schüler et al.

Proc. 4-ext. 3-ext. 2-ext. 1-ext. 0-ext. Sum H ' r d dgop e Total
n o .

1 processor 0 8.3 12.9 182.7 66.4 74.8 345.1 403.1 5.9 415.6

3 processors 0 3.6 5.2 53.4 33.8 25.3 121.3 146.4 6.7 159.5
1 3.1 4.2 66.9 18.1 24.5 116.8 146.4 1.3
2 2.7 3.6 66.0 14.8 26.2 113.3 146.4 1.5

sum 9.4 13.0 186.3 66.7 76.0 351.4

7 processors 0 2.1 2.1 29.0 20.0 16.3 69.5 98.3 16.3 121.1
1 1.9 1.6 34.4 6.5 14.0 58.4 98.1 5.1
2 2.2 2.1 32.3 9.0 13.4 59.0 98.3 5.2
3 0.9 0.8 33.4 3.4 14.7 53.2 98.1 4.6
4 1.0 1.1 37.3 4.5 14.0 57.9 98.1 5.1
5 2.6 3.1 31.9 12.3 12.9 62.8 98.0 5.0
6 2.6 2.6 30.5 11.4 12.0 59.1 98.1 4.7

sum 13.3 13.4 228.8 67.1 97.3 419.9

a Timings in wall clock seconds for one Davidson iteration
b For the definition of the individual contributions see the text
c The C»-pVDZ test oase with 30 segments is used
d Includes I/O for reading and writing the v and w vectors but excludes the time for the global sum
e Global sum (see Fig. 3)

node, even though formally used dur ing the execution of C I U D G , is no t counted
in the following discussion.

First tests very quickly showed that efficient t rea tment of I /O is crucial for
working with the iPSC. For the 4- and 3-external integral files we use the
asynchronous I R E A D () rout ine [29] and for the other integral files and for
reading and writ ing the v and w segments C R E A D () and C W R I T E () [29]. The
results of our final calculations are collected in Table 5. Looking first at the
t imings of the individual sections 4- to 0-external and the sum for each process
(hor izonta l sum) one finds that load balancing works abou t as well as for our tests
on the other computers. The increase in total time spent for each case (vertical
sums) with the n u m b e r of processors is a t t r ibuted to the decreasing efficiency to
access the integral files individually. This increase is especially remarkable for the
2- and 0-external cases. The difference between the timings in the horizontal sums
and those in co lumn H - va re due to reading and writ ing the v and w vectors. The
effort necessary for these disk operat ions is still substantial . The jus t described
trends cont inue when the number of processors is increased. Calculat ions with 15
processors do not show any addi t ional speedup compared to the 7 processor case,

It would be possible to improve the I /O for the 2-, 1- and 0-external integrals
by in t roducing asynchronous I /O in the same way as was done for the 4- and
3-external integrals. Performing the I /O for the v and w vectors is more difficult
since these files are treated in direct access mode. In any case, it seems to be clear
that all these further improvements of disk I /O would not lead to satisfactory
results. We intend to go into a completely different direction and to remove the
disk I /O completely by moving towards a fully asynchronous d is t r ibuted-memory
model as described in Sect. 4.

Parallel implementation of the COLUMBUS MRSDCI 507

4 Conelusions and outlook

We could show that our coarse-grain approach to parallelize the CI section of
the COLUMBUS program is a successful orte. On a 8 processor Cray Y-MP we
have achieved a speed close to 1 GFLOP per wall clock second for the most
important part of the program. The changes which are necessary to port the
program from one parallel computer to the other are minimal and are auto-
mated. However, we also have made it clear that, because of the complexity and
requirements of MRCI programs in general, the work described here has to be
regarded as a first step. Within the present structure a few technical improve-
ments, including the acceleration of the direct formula calculation and of the
global sum and data compression schemes [30] for the v and w vectors must be
made. With these changes a working version of C IU D G for routine applications
will be available for shared memory machines. It is also evident from out results
for the iPSC that these developments alone will not be sufficient. We will have to
do more about data structures.

One way to treat structures more efficiently is to move away from the
excessively synchronous message-passing model (some synchronization will al-
ways be necessary since we do not have unlimited buffer space available) to a
fully asynchronous distributed-memory model. Such a model, closely related to
Linda [31], is described in Ref. [32]. Basically, buffers of data are pur into a
globally accessible space which is uniformly distributed across all processes. An
event-driven mechanism provides fully asynchronous access for all processes to
all of the data, with a bandwidth for distributed accesses that scales up with the
number of processes. Work in this direction is in progress on the Intel iPSC/860
hypercube and is also expected to be of similar benefit on shared-memory
parallel computers such as the Cray Y-MP or the Alliant FX/2800.

This distributed-memory model can be used to eliminate the excess I/O on
the 2-external integrals. The I/O on the v and w vector files scales approximately
linearly with the number of segments, and since each process has its own local
copy the total disk space increases linearly with the number of processes. It is
proposed to buffer this data with a distributed data model also, exploiting the
coordination properties of the Linda-like primitives [31, 32] to handle the mutual
exclusion required for correct updating. An alternative solution is to use a single

. shared file with locks at the segment level.
One of the biggest requirements for disk space usually arises from the 3- and

4-external integrals. For very large systems this is a bottleneck in even the
sequential code and work is underway to change to an AO driven scheme
[33-36]. Initially, the AO integrals will be stored on disk, employing sparsity.
However, this then readies us for a simple transformation to a so-called
"double-direct" MRSDCI algorithm, recomputing the integrals only as needed.
The 0-, 1- and 2-external integrals are still processed in the MO basis.

At this point we fully expect to have a program that performs effectively on
few (10-30) processor computers, depending somewhat on the nature of the
computation and how effective the I/O subsystem is. The just described program
features will also put us into the position to effectively use workstations within
local area networks which, as has already been stressed in the beginning,
represent a very valuable and widespread source for computational power.

To go beyond this level, to a massively parallel version, we need to eliminate
essentially anything that is either serial or actually increases with the number
of processes/segments. Almost all I/O must be eliminated and the Davidson

508 M. Schüler et al.

algorithm must be modified [37] so that only one full v and w vector need be
manipulated. Amdahl's law [38] is a severe task master on massively parallel
machines. To get a speedup of just 500 on a 1000 processor machine (only 50%
efficiency) the combination of the serial work and overhead due to parallelization
or lack of load balancing must be less than 0.1% of the parallel work. Such a
decomposition would give rise to an efficiency of 99.2% on just 10 processors.
An efficiency of just 50% seems low if performance is out only goal. However,
it still should be enough that calculations with O(108) or more configurations in
very large MO basis sets could become quite routine on large parallel computers.

Authors' note

The COLUMBUS program system timings presented in this paper represent
preliminary work and the individual codes have been optimized to different
extents on the various computer systems. Consequently, these timings should not
be used directly to assess either the ultimate performance of the. COLUMBUS
program system or to compare the performance of the different computer
systems.

Acknowledgements. This work was performed under the auspices of the Office of Basic Energy
Sciences, Division of Chemical Sciences, U.S. Department of Energy, contract number W-31-
109-Eng-38, and the Austrian "Fonds zur Förderung der wissenschaftlichen Forschung", Project
numbers P7174 and P7979. We are also grateful for support by the "Österreichische Forschungsge-
meinschaft", Project number 06/1454, and by the Commission of the European Communities
(Codest), Contract No. SC1"915086. We thank Cray Research for supplying us with generous
support and ample computer time at a Cray Y-MP in Eagan, Minnesota. The calculations on the
iPSC/860 were performed at the ACRF of the Argonne National Laboratory and at the CCSF at
CalTech, those on the Alliant FX/2800 at the facilities of the Theoretical Chemistry Group,
Chemistry Division, Argonne National Laboratory and those on the Convex C220 at the EDV
Zentrum of the University Innsbruck. We also are grateful to the Pacific Northwest Laboratory
(PNL) for access to the Concurrent Supercomputer Consortium iPSC/860 at CalTech and to Rick
Kendall from PNL for helpful discussions.

References

1. Lischka H, Shepard R, Brown F, Shavitt I (1981) Intern J Quantum Chem S15:91
2. Ahlrichs R, Böhm H-J, Erhardt C, Scharf P, Schiffer H, Lischka H, Schindler M (1985) J Comp

Chem 6:200
3. Shepard R, Shavitt I, Pitzer RM, Comeau DC, Pepper M, Lischka H, Szalay PG, Ahlrichs R,

Brown FB, Zhao JG (1988) Intern J Quantum Chem $22:149
4. Saunders VR, Guest MF (1982) Comput Phys Commun 26:389
5. Saunders VR, van Lenthe JH (1983) Mol Phys 48:923
6. Whiteside RA, Binkley J St, Colvin ME, Schaefer III HF (1987) J Chem Phys 86:2185
7. Colvin ME, Whiteside RA, Schaefer III HF (1989) In: Wilson S (ed) Methods in computational

chemistry, vol 3. Plenum, NY
8. Luethi HP, Almlöf J (1992) University of Minnesota Supercomputer Institute Research Report

UMSI 91/249, Minneapolis, Minnesota
9. Rendell AP, Lee TJ, Lindh R (1991) Daresbury Laboratory, Daresbury, Warrington

10. Brode S, Ahlrichs R, A distributed implementation of TURBOMOLE(DSCF), private commu-
nication

11. Paldus J (1981) In: Hinze J (ed) The unitary group for the evaluation of electronic energy matrix
elements. Springer-Verlag, Berlin, p 1

Parallel implementation of the COLUMBUS MRSDCI 509

12. (a) Shavitt I (1981) In: Hinze J (ed) The unitary group for the evaluation of electronic energy
matrix elements. Springer-Verlag, Berlin, p 51
(b) Shavitt I (1988) In: Truhlar DG (ed) Mathematical frontiers in computational and chemical
physics. Springer-Verlag, Berlin, p 300

13. Davidson ER (1975) J Comput Phys 17:87
14. (a) Roos BO (1972) Chem Phys Lett 15:153

(b) Roos BO, Siegbahn PEM (1977) In: Schaefer III HF (ed) Methods of electronic structure
theory. Plenum, NY, p 277

15. Werner HJ, Reinsch EA (1982) J Chem Phys 76:3144 and references therein
16. Ahlrichs R (1983) In: Diercksen GHF, Wilson S (eds) Methods in computational molecular

physics. Reidel, Dordrecht, p 209
17. Meyer W, Ahlrichs R, Dykstra CE (1984) In: Dykstra CE (ed), Vectorization of advanced

methods for molecular electronic structure. NATO ASI, Reidel, Dordrecht
18. (a) Dongarra JJ, DuCroz J, Hammarling S, Hanson R (1988) ACM Trans on Math Soft 14:1

(b) Dongarra JJ, DuCroz J, Duft I, Hammarling S (1990) ACM Trans on Math Soft 16:1
19. Pitzer RM, Shepard R (1983) In: Annual Report of the Theoretical Chemistry Group, October

1982 to September 1983, Argonne National Laboratory, Argonne IL, USA
20. Harrison RJ, Kendall RA (1991) Theor Chim Acta 79:337
21. Shepard R (1990), unpublished results, presented at the 45th Ohio State University Symposium

on Molecular Sepctroscopy, Columbus, Ohio
22. Harrison RJ (1991) Intern J Quant Chem 40:847
23. Aoyagi M, Shepard R, Wagner AF (1991) Intern J Supercomputer Applications
24. Dunning Jr. TH (1989) J Chem Phys 90:1007
25. UNICOS Performance Utilities (1991) Reference Manual SR-2040. Cray Research Inc., Men-

dota Heights, MN 55120, USA
26. UNICOS Fortran Library Reference Manual SR-2079. Cray Research Inc., Mendota Heights,

MN 55120, USA
27. Shavitt I (1977) The method of configuration interaction. In: Shcaefer III HF (ed) Methods of

electronic structure theory. Plenum, NY, p 189
28. (a) Davidson ER (1974) In: Daudel R, Pullman B (eds) The world of quantum chemistry.

Reidel, Dordrecht, p 17
(b) Langhoff SR, Davidson ER (1975) Int J Quantum Chem $9:183

29. iPSC/2 and iPSC/860 Programmer's Reference Manual (1990). Intel Scientific Computers,
Beaverton, Oregon

30. Shepard R (1990) J Comp Chem 11:45
31. (a) Carriero N, Gelernter D (1989) Comm of the ACM 32:444

(b) Carriero N, Gelernter D (1990) How to write parallel programs. A first course. The MIT
Press, Cambridge, MA

32. Harrison RJ, Theor Chim Acta (submitted for publication)
33. Meyer W (1977) Configuration expansions by means of pseudonatural orbitals. In: Schaefer III

HF (ed) Methods of electronic structure theory. Plenum, NY, p 413
34. (a) Werner HJ, Reinsch EA (1981) In: Van Duijnen TH, Niewpoort WC (eds) Proc 5th Seminar

on Computational Methods in Quantum Chemistry. MPI Garching München
(b) Werner HJ, Reinsch EA (1982) J Chem Phys 76:3144

35. Ahlrichs R (1981) In: Van Duijnen TH, Niewpoort WC (eds) Proc 5th Seminar on Computa-
tional Methods in Quantum Chemistry. MPI Garching, München

36. Kovar T, Lischka H, work in progress
37. Davidson ER (1989) Comp Phys Comm 53:49
38. Amdahl GM (1967) Proc AFIPS Spring Joint Computer Conf 30:40

